This degree thesis investigates the possibilities of producing food inside a container at Svalbard, using renewable energy and energy storage. The idea was to be able to place the container at remote places without the need of being connected to the grid. We chose Svalbard, where it is cold and the sun is shining 24 hours a day at summertime. In the winter the opposite occurs and the sun is absent from the sky. The work is divided into theoretical studies and results based on different calculations. Such as economical evaluations (LCOE), and simulations using the computer programs Matlab and PVsyst. We have investigated if solar power and wind power is suitable as energy sources. Options for storage were batteries, grid and hydrogen storage. Different cases with Photovoltaics- and wind power plants, with batteries or grid, were compared against each other. It is not possible to use the grid as storage. This resulted in different sizing of our cases, with no excess energy production. The result showed that a 5 kWp photvoltaic plant with dual axis tracking system, was the most profitable. The Pay off would be 14 years and the total profit 63 453 SEK. If it will become possible in the future to use the grid at Svalbard as storage, it will open up opportunites for bigger systems. This will lead to higher profit than with smaller ones. Our results show that it is now most profitable with solar power.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-36878 |
Date | January 2018 |
Creators | Andreasson, Tobias, Lindh, Emelia |
Publisher | Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.012 seconds