Return to search

Sterically flexible molecules in the gas phase

Für die makroskopischen Eigenschaften und Funktionen biologisch relevanter Materie spielen schwache, intra- und intermolekulare Wechselwirkungen dispersiver und elektrostatischer Natur auf molekularem Niveau eine große Rolle. Um diese schwachen Wechselwirkungen zu untersuchen, können Modellsysteme, isoliert in der Gasphase, herangezogen werden. Benzoldimer, ein schwach gebundener Van der Waals Komplex, kann beispielsweise als Modellsystem für dispersive Wechselwirkungen dienen. In der vorliegenden Arbeit werden die strukturellen Eigenschaften und die (interne) Dynamik des Benzoldimers mit Hilfe spektroskopischer Methoden in den Energiebereichen der Rotationen, Vibrationen und elektronischen Übergänge untersucht und im Kontext der Symmetrie diskutiert. Die in dieser Arbeit vorgestellten Experimente tragen zu einem tieferen Verständnis des Benzoldimers bei, jedoch zeigt das Experiment zur internen Dynamik auch, dass eine ausreichende theoretische Beschreibung des Benzoldimers nach wie vor eine Herausforderung darstellt. Schwingungsübergänge hochsymmetrischer Moleküle sind oft optisch inaktiv, können jedoch mit der hier vorgestellten Methode der Symmetrieerniedrigung durch Komplexierung zugänglich gemacht werden, wie am Beispiel des Benzols demonstriert wird. Außerdem wird ein Mechanismus vorgstellt, der kollisionsinduzierte Konformationsänderungen in einem Molekularstrahl beschreibt. Dieses Modell kann generell für Molekularstrahlexperimente an flexiblen Molekülen hilfreich sein, einerseits um die beobachtete Konformationsverteilung zu verstehen, andererseits um die experimentellen Parameter gezielt zu verändern und somit Konformerpopulationen zu manipulieren. Die in dieser Dissertation vorgestellten spektroskopischen Experimente liefern einerseits molekülspezifische Informationen und ermöglichen andererseits, Modelle, die von allgemeiner Bedeutung sind, zu entwickeln. / The macroscopically observable properties and functionalities of biological matter are often determined by weak intra- and intermolecular interactions on the microscopic level. Such weak interactions are for example hydrogen bonding and van der Waals interactions and can be investigated best on isolated model systems in the gas phase. The benzene dimer, for example, is a prototype system to investgate dispersive interactions. The spectroscopic experiments, covering the energy ranges of rotations, vibrations and electronic transitions, presented in this thesis, contribute to a deeper understanding of the benzene dimer. However, from the experiments investigating the internal dynamics it becomes clear that an appropriate theoretical description of the benzene dimer is still a challenge. Vibrational transitions of highly symmetric molecules, as for example of the benzene, are often optically inactive. Here, a method is presented, which exploits symmetry reduction upon complexation and thus allows one to access such modes. Furthermore, a model is proposed describing collision induced conformational interconversion in a molecular beam. This model can be helpful for molecular beam experiments of flexible molecules to understand the observed relative conformational population and to adapt the experimental conditions allowing for the manipulation of the relative conformer abundances. In this thesis, results are presented that allow one on the one hand to deduce molecular specific information and that on the other hand also give a broader insight into phenomena of general importance.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16485
Date24 October 2008
CreatorsErlekam, Undine
ContributorsMeijer, Gerard J. M., Rademann, Klaus
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0029 seconds