Spelling suggestions: "subject:"wasserstoffbrückenbindung"" "subject:"wasserstoffbrückenbindungs""
1 |
Theoretical Investigation of the Geometrical Arrangements of alpha-alanyl-peptide Nucleic Acid Hexamer Dimers and the Underlying Interstrand Binding Motifs / Theoretische Untersuchungen der geometrischen Anordnung der alpha-Alanyl-Peptid-Nukleinsäure-Hexamer-Dimere und deren Interstrang-BindungsmotiveSturm, Christian January 2006 (has links) (PDF)
Die Funktionalitäten der DNA oder RNA werden hauptsächlich durch die verschiedenen Wechselwirkungen der paarenden Nucleinbasen bestimmt. Um die komplexen Zusammenhänge dieser verschiedenen Wechselwirkungen zu verstehen, werden Modellsysteme benötigt, die weniger Restriktionen durch das Rückgrat besitzen. Ein Beispiel für solche Systeme sind Peptidnucleinsäuren (PNA), in denen das Zuckerphosphatrückgrat der DNA oder RNA durch ein Peptidrückgrat ersetzt wird. Diederichsen et al. gelang es, eine große Anzahl solcher Systeme mit einen alpha-Alanyl-Rückgrat zu synthetisieren, an das kanonische und nicht-kanonische Nucleinsäuren gebunden sind. Diese Systeme aggregieren in verschiedenen Bindungsmotiven, die nicht in der DNA oder RNA auftauchen. Diese ungewöhnlichen Paarungsmotive könnten einen tiefen Einblick in das Zusammenspiel der Wechselwirkungen der Nucleinbasen geben, aber die geringen Löslichkeit der alpha-Alanyl-PNA Oligomere verhinderte eine experimentelle Charakterisierung der geometrischen Anordnung durch Röntgenstruktur- oder NMR-Experimente. Lediglich die absolute Stabilität der verschiedenen Aggregate konnte durch Messungen der Schmelztemperatur mit Hilfe der UV-Spektroskopie bestimmt werden. Da die Kenntnis der geometrischen Strukturen sowie der ausgebildeten Bindungsmotive wichtig ist, um einen Einblick in das Zusammenspiel der einzelnen Wechselwirkungen zu erlangen, besteht das Ziel der vorliegenden Arbeit darin, solche Informationen mit der Hilfe von theoretischen Methoden zu erlangen. Zusätzlich sind Effekte von Interesse, aus denen sich Trends bezüglich der Stabilität bestimmen lassen. Solche Untersuchungen sind einfacher zu realisieren als die Berechnung der absoluten Stabilitäten, da viele Beiträge zur absoluten Energie für ähnliche Systeme (entropische und dynamische Effekte) in etwa gleich groß sind. Somit sind diese entropischen und dynamischen Effekte für das Ziel dieser Arbeit weniger wichtig. Zur Untersuchung der Bindungseigenschaften und der Stabilitäten von alpha-Alanyl-PNA Oligomeren war es notwendig, bis dato nicht parametrisierte Nucleinbasen in den Parametersatz des Amber4.1 Kraftfelds zu integrieren. Die fehlenden Ladungen wurden durch Berechungen mit dem R.E.D-Programm-Paket ermittelt. Das Programm bestimmt aus dem elektrostatischen Potential einer optimierten Struktur die atomzentrierten Ladungen. Die fehlenden Bindungsparameter wurden der Literatur entnommen. Die Untersuchungen der einzelnen Dimere begannen jeweils mit der Konstruktion der alpha-Alanyl-PNAs für alle möglichen Paarungsmodi. Es konnte gezeigt werden, dass bestimmte Paarungsmodi aufgrund der geometrischen Gegebenheiten der Dimere und des Rückgrats nicht realisierbar waren. Für andere Dimere war ein Aufbau der alpha-Alanyl-PNA-Dimere zwar möglich, jedoch zerfielen die Dimere wieder während einer ersten Geometrieoptimierung aufgrund der hohen Spannung im Rückgrat. Die stabilen Systeme wurden zunächst in verschiedenen Molekulardynamik-(MD)-Läufen simuliert. Informationen über die Geometrie bei T=0 K wurden durch Geometrieoptimierungen erhalten, die an verschieden Punkten der MD Läufe gestartet wurden. Die resultierenden Geometrien aus den verschiedenen Anfangspunkten waren identisch. Für die geometrieoptimierten Strukturen wurden für das T=0 K Modell die Wechselwirkungsenergien zwischen den Nucleinbasen und der Einfluss der Rückgrats auf die Stabilität der Dimer in zwei separaten Schritten bestimmt. Im ersten Schritt wurde das Rückgrat entfernt und die Schnittstellen mit Methylgruppen abgesättigt. Die Wechselwirkungsenergie zwischen den Nucleinbasen wurde durch die Differenz der Energien des gesamten Systems und der Summe der Energien der einzelnen Nucleinbasen in der Geometrie des Dimers bestimmt. Aufgrund der durchgeführten Untersuchungen und die sich daraus ergebenen Korrelation der berechneten Stabilisierungsenergien mit der Schmelztemperatur konnte gezeigt werden, dass mit der vorgeschlagenen Methode eine verlässliche Beschreibung der PNA Systeme möglich ist. Für eine weitere Verbesserung des vorgestellten Modells bedarf es zusätzliche Röntgenstruktur- oder NMR-Experimente, die zur Strukturaufklärung der alpha-Alanyl-PNA Dimere entscheidend beitragen. Weitere detaillierte Daten über die Enthalpiebeiträge zur absoluten Energie der verschiedenen Komplexe wären sehr hilfreich, um die vorgestellte Methode zu bestätigen und zu verbessern. Diese Informationen könnten zum einen durch die Auswertung der Form der Schmelzkurve sowie durch Mikrokalorimetrie erhalten werden. Für den Fall, dass die Vorhersagen durch die experimentellen Befunde bestätigt würden, könnte der Ansatz auf verwandte Systeme wie zum Beispiel beta-Alanyl-PNA, DNA oder RNA angewandt werden. Durch diese weiteren Informationen könnte unser Ansatz zusätzlich durch die Berücksichtigung von dynamischen und/oder entropischen Effekte erweitert werden. / The functionalities of DNA and RNA are mainly determined by the various interactions between the pairing nucleobases. To understand the complex interplay of the various interactions model systems are needed in which the interstrand pairing is less restricted by the backbone. Such systems are peptide nucleo acids (PNA) in which the sugar phosphate backbone of DNA or RNA is replaced by a peptide backbone. Diederichsen et al. were able to synthesize a large number of systems with an alpha-alanyl backbone to which canonical and non-canonical nucleobases were attached (alpha-alanyl-PNA). These systems formed aggregates with various binding motifs which do not appear in DNA or RNA. Especially the unusual binding motifs would allow a deep insight into the complex interplay of the interactions between nucleobases but the small solubility of alpha-alanyl PNA oligomers hampers the experimental determination of the geometrical arrangement by X-Ray or NMR. Only the overall stability of the various aggregates could be determined by measurements of melting temperatures via UV spectroscopy. Since a detailed knowledge about the geometrical structure and bonding motifs are necessary to obtain insight into the interplay of the various interactions it is the goal of the present work to achieve such information with the help of theoretical approaches. Additionally we are interested in the effects which govern the trends in the stabilities of the systems. This task should be simpler than an investigation of the absolute stabilities since many contributions (e.g. entropic and dynamic effects) can be expected to be similar for similar systems. Consequently, such effects are less important for our goal. For the investigation of all experimentally tested alpha-alanyl-PNA oligomers it was essential to parameterize the noncanonical nucleobases since they were not implemented in the standard version of the Amber4.1 force field. This was achieved by adding the missing parameters to the Amber Force Field. The charges of each nucleobase were determined by the R.E.D program package. The investigation started with the construction of all possible pairing modes for alpha-alanyl-PNA dimer. It could be observed that certain pairing modes were not realizable due to the geometrical arrangement of the dimer and the restriction of the backbone. For other pairing modes a construction was possible, but due to the geometrical restrictions of the backbone the strain in the system is so high that they fall apart during a first geometry optimization. Stable systems were then simulated by various molecular dynamics (MD)-runs. Information about their geometrical arrangements for T=0 K were obtained from geometry optimizations which were started from various points of the MD-run. The resulting geometries were found to be virtually identical. Information about the interactions within a dimer at T=0 K were obtained from a two step procedure in which the effects connected with the nucleobases and the influence of the backbone are determined separately. It was performed for the optimized geometries. In a first step the backbone was removed and the resulting dangling bonds were saturated by methyl groups. The total interaction energy between the nucleobases can now be estimated by the difference between the energy of the complete system and the sum of the energies of the single nucleobases computed at the geometries they take in the whole system. According to the carried out investigation and the resulting correlation of the melting temperature with the calculated stabilization energies the presented method seems to represent a reliable tool for the description of the PNA systems. Despite this success additional experimental verifications of our method are necessary to ensure its applicability. Such verifications could be based on geometrical information obtained via X-Ray or NMR investigations. More detailed data about entropic an enthalpic contribution to the stability of the various complexes would also be very helpful to verify and improve our approach. Such information could be either obtained from a careful analysis of shape of the melting temperature curve or from microcalorimetric investigations. If such tests confirm our predictions the approach could be extended and applied to neighboring fields as for examples beta-alanyl-PNA, DNA or RNA systems with unusual nucleobases. Such information is also necessary to extend our approach in a way that dynamic and/or entropic effects are also taken into account.
|
2 |
Hydrogen Bond-directed Self-assembly of Perylene Bisimide OrganogelatorsLi, Xueqing January 2009 (has links) (PDF)
Perylene bisimide (PBI) dyes are a widely used class of industrial pigments, and currently have gained significant importance for organic-based electronic and optical devices. Structural modification at the PBI core results in changes of the optical and electronic properties, which enable tailored functions. Moreover, the aggregation behavior of PBIs is alterable and controllable to achieve new materials, among which organogels are of particular interest because of their potential for applications as supramolecular soft materials. In this work, new PBI-based organic gelators were designed, synthesized, and characterized, and the aggregation behaviors under different conditions were intensively studied by various spectroscopic and microscopic methods. In chapter 2, a brief overview is given on the structural and functional features of organogel systems. The definition, formation and reversibility of organogels are introduced. Some examples on dye based organogel are selected, among which PBI-based organogelators reported so far are especially emphasized. Some basic knowledges of supramolecular chirality are also overviewed such as characterization, amplification, and symmetry breaking of the chiral aggregates. According to our former experiences, PBIs tend to form aggregates because the planer aromatic cores interact with one another by pi-pi interaction. In chapter 3, a new PBI molecule is introduced which possesses amide groups between the conjugated core and periphery alkyl chains. It is found that well oriented aggregates are formed by hydrogen bonding and the pi-pi interaction of the cores. These interactions enable the aggregates to grow in one-dimension forming very long fibers, and these fibers further intercross to 3D network structures, e.g., organogels. In comparison to the very few PBI-based gelators reported before, one advantage of this gelator is that, it is more versatile and can gelate a wide range of organic solvents. Moreover, the well-organized fibers that are composed of extended π-stacks provide efficient pathways for n-type charge carriers. Interestingly, AFM studies reveal that the PBI molecules form well-defined helical fibers in toluene. Both left-handed (M) and right-handed (P) helicities can be observed without any preference for one handedness because the building block is intrinsically achiral. In chapter 4, we tried to influence the M/P enantiomeric ratio by applying external forces. For example, we utilized chiral solvents to generate chiral aggregates with a preferential handedness. AFM analysis of the helices showed that a enantiomeric ratio of about 60: 40 can be achieved by aggregation in chiral solvents R- or S-limonene. Moreover, the long aggregated fibres can align at macroscopic level in vortex flows upon rotary stirring In chapter 5, bulky tetra-phenoxy groups are introduced in the bay area of the PBI gelator. The conjugated core of the new molecule is now distorted because of the steric hindrance. UV/Vis studies reveal a J-type aggregation in apolar solvents like MCH due to intermolecular pi-pi-stacking and hydrogen-bonding interactions. Microscopic studies reveal formation of columnar aggregates in apolar solvent MCH, thus this molecule lacks the ability to form gels in this solvent, but form highly fluorescent lyotropic mesophases at higher concentration. On the other hand, in polar solvents like acetone and dioxane, participation of the solvent molecules in hydrogen bonding significantly reduced the aggregation propensity but enforced the gel formation. The outstanding fluorescence properties of the dye in both J-aggregated viscous lyotropic mesophases and bulk gel phases suggest very promising applications in photonics, photovoltaics, security printing, or as fluorescent sensors. In chapter 6, we did some studies on combining PBI molecules with inorganic gold nanorods. Gold nanorods were synthesized photochemically. By virtue of the thioacetate functionalized PBIs, the rods were connected end to end to form gold nanochains, which were characterized by absorption spectra and TEM measurement. Such chromophore-nanorod hybrids might be applied to guide electromagnetic radiation based on optical antenna technology.
|
3 |
Crystal structures of monohydrate and methanol solvate compounds of {1-[(3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzyl)amino]cyclopentyl}methanolStapf, Manuel, Seichter, Wilhelm, Mazik, Monika 17 April 2024 (has links)
In the title monohydrate compound, 1a, and the methanol solvate compound, 1b, the triethylbenzene derivative, C35H51N5O, has three functionalized side arms and three ethyl groups, the former being located on one side of the central benzene ring, while the latter are directed to the opposite side. Both the crystals are constructed of structurally similar dimers of 1:1 host–guest complexes held together by N—H...O and O—H...N hydrogen bonds, and in 1a additionally by O—H...O hydrogen bonds. The structure of 1b contains additional highly disordered solvent molecules. Thus, the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON was used to generate a modified data set, in which the contribution of the disordered molecules to the structure amplitudes is eliminated. These solvent molecules are not considered in the reported chemical formula.
|
4 |
Wasserstoffbrückengesteuerte Ausrichtung von Merocyaninfarbstoffen für photorefraktive Materialien / Hydrogen-Bond-Directed Orientation of Merocyanine Dyes for Photorefractive MaterialsSchmidt, Johann January 2008 (has links) (PDF)
Merocyaninchromophore spielen eine herausragende Rolle bei der Entwicklung von photorefraktiven Materialien für Anwendungen in der Holographie. Der photorefraktive Effekt beruht auf einer Orientierung der dipolaren Merocyanine in einem elektrischen Feld. Diese können umso effektiver ausgerichtet werden, je größer ihr Dipolmoment ist. Folglich sollten Merocyanine mit sehr großen Dipolmomenten den gewünschten Effekt hervorbringen. Es hat sich jedoch gezeigt, dass solche Merocyanine Dimere mit antiparalleler zentrosymmetrischer Struktur bilden. In dieser Anordnung addieren sich die Dipolmomente destruktiv, so dass die dipolare Eigenschaft des Materials verloren geht. In dieser Arbeit ist es gelungen, Merocyanine über sechsfache Wasserstoffbrückenbindungen zu supramolekularen Strukturen mit großen resultierenden Dipolmomenten zu assoziieren. Diese Komplexe werden in schwach polaren Lösungsmitteln sogar bei sehr niedrigen Farbstoffkonzentrationen gebildet. / Merocyanine dyes play a major role in the development of photorefractive materials to be applied in holography. The photorefractive effect is based on the orientation of dipolar merocyanine dyes by an external electric field. Merocyanine dyes with very high dipole moments are supposed to be the most suitable for achieving an optimal effect because, with increasing dipole moment, a higher degree of orientation can be achieved are the more efective is the their orientation. However, strongly dipolar merocyanine dyes form antiparallel dimers with vanishing dipole moment due to their dipolar interaction. Thus, the dimers can not be oriented by an electric field. In this thesis, merocyanine dyes were successfully assembled through six-fold hydrogen-bonding into supramolecular structures with large resulting dipole moments. In less polar solvents, these complexes are formed even at very low dye concentration.
|
5 |
Dendrimers Based on 1,4-Phenylene Units: Synthesis, Reaction Chemistry, Reactivity, Structure and BondingIshtaiwi, Zakariyya 11 May 2009 (has links) (PDF)
In der vorliegenden Arbeit wird eine konvergente Synthesestrategie zum Aufbau von formstabilen dendritischen
Carbosilanmolekülen mit 1,4-Phenyleneinheiten, welche als “Silicium-Silicium-Spacer” fungieren, vorgestellt. Zur
Darstellung dieser Verbindungen kommen repetitive Lithiierungs-Silylierung-Zyklen zur Anwendung.
Die Lithiierung von 1-Br-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (n = 0, 1, 2, 3) mit nBuLi und die
Umsetzung von in-situ generiertem 1-Li-4-Si(CH2CH=CH2)nMe3-nC6H4 mit SiCl4 liefert Dendrimere der 0. Generation
Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)4 (n = 1, 2, 3). Wird 1-Li-4-Si(CH2CH=CH2)nMe3-nC6H4 mit 1-Br-4-SiCl3-C6H4 zur
Reaktion gebracht, sind Dendronen der 0. Generation 1-Br-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (n = 0; 1; 2; 3)
zugänglich. Durch repetitive Lithiierungs-Silylierungs-Zyklen können ausgehend von 1-Br-4-C6H4-Si(C6H4-4-
Si(CH2CH=CH2)nMe3-n)3 Dendrimere höherer Generationen aufgebaut werden. Bringt man die lithiierte Spezies 1-Li-4-
C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3, welche ausgehend von 1-Br-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3
durch Metallierung mit tBuLi zugänglich ist, in Anwesenheit von TMEDA mit SiCl4 zur Reaktion, so erhält man die
Dendrimere der 1. Generation Si(C6H4-4-(C6H4-4-Si(CH2CH=CH2)nMe3-n)3)4 (G1b, n = 1; G1c n = 2). Erfolgt die
Silylierung jedoch in Abwesenheit von TMEDA, werden die Chlorsilane ClSi(C6H4-4-(C6H4-4-Si(CH2CH=CH2)nMe3-
n)3)3 (D1bCl, n = 1; D1cCl, n = 2) gebildet.
Die Silylierung von 1-Li-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 mit 1-Br-4-SiCl3-C6H4 liefert die
Dendronen der 1. Generation 1-Br-C6H4-4-Si(C6H4-4-(C6H4-4-Si(CH2CH=CH2)nMe3-n)3)3 (D1b, n = 1; D1c, n = 2; D1d,
n = 3). Diese liegen in einem Gleichgewicht monomerer und komplementärer dimerer Spezies vor. Die Dimerisierung
kann durch NMR-Untersuchungen sowie durch die Einkristallröntgenstruktur von D1bCl belegt werden.
Die Darstellung von Carbosilanen des Typs PhMeSi((CH2)3B(OH)2)2 (2), Si(C6H4-4-SiMe2((CH2)3B(OH)2)4 (5),
PhMeSi((CH2)3OH)2 (3) und Si(C6H4-4-SiMe3-n((CH2)3OH)n)4 (6a, n = 1; 6b, n = 2; 6c, n = 3) wird beschrieben. Die
Boronsäuren 2 und 5 sind durch Umsetzung von PhMeSi(CH2CH=CH2)2 (1) und Si(C6H4-4-SiMe2(CH2CH=CH2))4 (4a)
mit HBBr2·SMe2 und anschließender Hydrolyse zugänglich, während 3 und 6a - 6c durch Hydroborierung von 1 und 4a -
c mit BH3·SMe2 und anschließender Oxidation mit H2O2 erhalten werden. Die Einkristallröntgenstruktur von 6a zeigt,
dass das Molekül aufgrund von π-π-Wechselwirkungen und der Ausbildung von Wasserstoffbrückenbindungen Teil eines
zweidimensionalen Netzwerks ist.
Ein weiterer Schwerpunkt der Arbeit widmet sich der Synthese und Charakterisierung von Dendrimeren der 0.
und 1. Generation mit symmetrisch substituiertem Porphyrin-Grundgerüst als multifunktionalem Kern. Hierbei werden
zunächst die allyl-terminierten Bromide 1-Br-4-Si(CH2CH=CH2)nMe3-nC6H4 (n =1, 2) bzw. die Dendronen -Br-4-C6H4-
Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (n = 0, 1, 2) in die aromatischen Aldehyde 1-HOC-4-Si(CH2CH=CH2)nMe3-nC6H4
(2b, n = 1; 2c, n = 2) bzw. 1-HOC-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (4a, n = 0; 4b, n = 1; 4c, n =2) überführt.
Aus diesen werden nach der Methode von Lindsey durch Umsetzung mit Pyrrol, BF3·OEt2 und DDQ die entsprechenden
Porphyrine H2T(-4-Si(CH2CH=CH2)nMe3-nC6H4)P (5b, n = 1; 5c, n = 2) bzw. H2T(-4-C6H4-Si(C6H4-4-
Si(CH2CH=CH2)nMe3-n)P (7a, n = 0; 7b, n = 1; 7c, n =2) aufgebaut. Deren Komplexierung mit Zn(OAc)2 liefert die Zn-
Porpyrine Zn(II) T(-4-Si(CH2CH=CH2)nMe3-nC6H4)P (6a, n = 1; 6b, n = 2) bzw. Zn(II) T(-4-C6H4-Si(C6H4-4-
Si(CH2CH=CH2)nMe3-n)P (8a, n = 0; 8b, n = 1; 8c, n =2).
Ausgehend von 5b und 5c sind Porphyrine mit terminalen Hydroxyl-Carbosilan-Einheiten via Hydroborierung-
Oxidation zugänglich. Diese Verbindungen einschließlich der entsprechenden Zn-Komplexe sind aufgrund ihrer
Fähigkeit zur Ausbildung von Wasserstoffbrücken-Netzwerken in hohem Maße zum Aufbau von supramolekularen
Strukturen geeignet. Anhand der Einkristallröntgenstruktur-Analyse von Zn[T(4-Si((CH2)3-OH)Me2-C6H4)P] 10a ist
ersichtlich, dass dieses Metalloporphyrin aufgrund von dirigierenden Wasserstoffbrücken Teil eines selbst
organisierenden Porphyrin-Netzwerks darstellt und darum einzigartige strukturelle Eigenschaften aufweist. Die
Einkristallröntgenstrukturen von 5b, 5c, 6b und 7b werden ebenfalls vorgestellt.
|
6 |
Siloxane und Silanole als Modellverbindungen für Oberflächendefekte: Hydrolyse- und KondensationsreaktionenRoesch, Philipp 14 February 2019 (has links)
Die vorliegende Arbeit befasst sich mit den Synthesen, Charakterisierungen und umfassenden Reaktivitätsstudien von unterschiedlich substituierten Organosilanolverbindungen, die ausgehend von den niedervalenten Siliziumverbindungen Tetramesityldisilen Mes2Si=SiMes2 (Mes = 2,4,6-Trimethylphenyl) und Hexakisarylcyclotrisilan (ArN2Si)3 (ArN = 2-[(Dimethylamino)methyl]phenyl) dargestellt wurden. Das durch Oxygenierung und Hydrolyse synthetisierte Tetramesitylsiloxandiol Mes2Si(OH)O(OH)SiMes2 wurde hinsichtlich seiner Reaktivität gegenüber Wasser und verschiedenen Ethern untersucht und dabei eingehend durch NMR- und IR-spektroskopische Analysen charakterisiert. Die Isolierung von Einkristallen ermöglichte darüber hinaus die Charakterisierung dreier polymerähnlicher Siloxandiol-Ether-Addukte im Festkörper. Neben Unterschieden der Struktur und Reaktivität in Lösung und im Festkörper konnte zusätzlich durch eine Kooperation mit Prof. Schalley (FU Berlin) anhand eines Gasphasenexperimentes des 18O-markierten Siloxandiolanions, in einem FT-ICR-ESI-Massenspektrometer der vollständige Austausch aller Sauerstoffatome durch Wassermoleküle nachgewiesen werden. Darüber hinaus führte die Einführung intramolekular stabilisierender Liganden wie in dem Siloxandiol ArN2(OH)Si(O)Si(OH)ArN2 zur vollständigen Austauschreaktion in organischen Lösemitteln. Ausgehend von dem [(Dimethylamino)methyl]phenylsubstituierten Cyclotrisilan (ArN2Si)3 konnte das Silylen-Lewispaar ArN2Si–B(C6F5)3 unter Einsatz der starken Lewis-Säure B(C6F5)3 isoliert werden. Durch Hydrolyse wird das Silanolboran ArN2H2OSi–B(C6F5)3 gebildet, das sich durch starke Wasserstoffbrückenbindungen zu den Aminsubstituenten auszeichnet. In Gegenwart von Base, H2O und Luft entsteht nach Dehydrogenierung und Kondensation das Borosiloxan [(HArN2(OB(C6F5)3)Si)2O]. Alle Verbindungen wurden isoliert und vollständig charakterisiert. Zusätzlich ergänzen DFT-Rechnungen (Prof. Kaupp, TU Berlin), die experimentell erhaltenen Beobachtungen. / The following thesis deals with the synthesis, characterization and detailed reactivity studies on differently substituted organosilanols, synthesized by the low valent silicon compounds tetramesityldisilene Mes2Si=SiMes2 (Mes = 2,4,6-trimethylphenyl) and hexakisarylcyclotrisilane (ArN2Si)3 (ArN = 2-[(dimethylamino)methyl]phenyl). Oxygenation and hydrolysis of tetramesityldisilene yielded tetramesitylsiloxanediol Mes2Si(OH)O(OH)SiMes2, the reaction behavior of which towards water and various ethers was studied by means of NMR and IR spectroscopy. Additionally, single crystal analysis delivered three different siloxanediol ether polymer-like structures in the solid state. Besides studies in solution and the solid state, gas phase reactions in a FT-ICR-ESI mass spectrometer of the 18O-labelled siloxanediol anion, showed complete exchange of all O-atoms in presence of gaseous water molecules (cooperation with Prof. Schalley, FU Berlin). Furthermore, we could show that altering the ligand system of the siloxanediol to the amine substituted siloxanediol ArN2(OH)Si(O)Si(OH)ArN2, resulted in a complete exchange of all oxygen atoms in solution when H217O was present. Starting from the [(dimethylamino)methyl]phenyl substituted cyclotrisilane (ArN2Si)3, formation of the Lewis acid stabilized silylene-borane ArN2Si–B(C6F5)3 was accomplished. In presence of water the silanolborane ArN2H2OSi–B(C6F5)3 was formed, showing characteristic strong intramolecular hydrogen bonding to its amino ligands. When reacted with a base and water under ambient air, a dehydrogenation reaction followed by condensation leads to the borosiloxane motif [(HArN2(OB(C6F5)3)Si)2O]. All compounds were isolated separately and fully characterized by means of NMR and IR spectroscopy, as well as X-ray diffraction analysis. In cooperation with Prof. Kaupp (TU Berlin), DFT-calculations were carried out to support the achieved experimental data.
|
7 |
Binding modes of methyl α-d-glucopyranoside to an artificial receptor in crystalline complexesKöhler, Linda, Hübler, Conrad, Seichter, Wilhelm, Mazik, Monika 09 July 2024 (has links)
Compared to the numerous X-ray crystal structures of protein-carbohydrate complexes, the successful elucidation of the crystal structures of complexes between artificial receptors and carbohydrates has been very rarely reported in the literature. In this work, we describe the binding modes of two complexes formed between methyl α-D-glucopyranoside and an artificial receptor belonging to the class of compounds consisting of a 1,3,5-trisubstituted 2,4,6-trialkylbenzene scaffold. It is particularly noteworthy that these two complexes are present in one crystal structure, as was observed by us for the first time in the case of the recently reported three crystal structures of the complexes with methyl β-D-glucopyranoside, each containing two different receptor–carbohydrate complexes. The noncovalent interactions stabilizing the new complexes are compared with those observed in the aforementioned crystalline complexes with methyl β-D-glucopyranoside.
|
8 |
Dendrimers Based on 1,4-Phenylene Units: Synthesis, Reaction Chemistry, Reactivity, Structure and BondingIshtaiwi, Zakariyya 05 March 2009 (has links)
In der vorliegenden Arbeit wird eine konvergente Synthesestrategie zum Aufbau von formstabilen dendritischen
Carbosilanmolekülen mit 1,4-Phenyleneinheiten, welche als “Silicium-Silicium-Spacer” fungieren, vorgestellt. Zur
Darstellung dieser Verbindungen kommen repetitive Lithiierungs-Silylierung-Zyklen zur Anwendung.
Die Lithiierung von 1-Br-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (n = 0, 1, 2, 3) mit nBuLi und die
Umsetzung von in-situ generiertem 1-Li-4-Si(CH2CH=CH2)nMe3-nC6H4 mit SiCl4 liefert Dendrimere der 0. Generation
Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)4 (n = 1, 2, 3). Wird 1-Li-4-Si(CH2CH=CH2)nMe3-nC6H4 mit 1-Br-4-SiCl3-C6H4 zur
Reaktion gebracht, sind Dendronen der 0. Generation 1-Br-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (n = 0; 1; 2; 3)
zugänglich. Durch repetitive Lithiierungs-Silylierungs-Zyklen können ausgehend von 1-Br-4-C6H4-Si(C6H4-4-
Si(CH2CH=CH2)nMe3-n)3 Dendrimere höherer Generationen aufgebaut werden. Bringt man die lithiierte Spezies 1-Li-4-
C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3, welche ausgehend von 1-Br-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3
durch Metallierung mit tBuLi zugänglich ist, in Anwesenheit von TMEDA mit SiCl4 zur Reaktion, so erhält man die
Dendrimere der 1. Generation Si(C6H4-4-(C6H4-4-Si(CH2CH=CH2)nMe3-n)3)4 (G1b, n = 1; G1c n = 2). Erfolgt die
Silylierung jedoch in Abwesenheit von TMEDA, werden die Chlorsilane ClSi(C6H4-4-(C6H4-4-Si(CH2CH=CH2)nMe3-
n)3)3 (D1bCl, n = 1; D1cCl, n = 2) gebildet.
Die Silylierung von 1-Li-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 mit 1-Br-4-SiCl3-C6H4 liefert die
Dendronen der 1. Generation 1-Br-C6H4-4-Si(C6H4-4-(C6H4-4-Si(CH2CH=CH2)nMe3-n)3)3 (D1b, n = 1; D1c, n = 2; D1d,
n = 3). Diese liegen in einem Gleichgewicht monomerer und komplementärer dimerer Spezies vor. Die Dimerisierung
kann durch NMR-Untersuchungen sowie durch die Einkristallröntgenstruktur von D1bCl belegt werden.
Die Darstellung von Carbosilanen des Typs PhMeSi((CH2)3B(OH)2)2 (2), Si(C6H4-4-SiMe2((CH2)3B(OH)2)4 (5),
PhMeSi((CH2)3OH)2 (3) und Si(C6H4-4-SiMe3-n((CH2)3OH)n)4 (6a, n = 1; 6b, n = 2; 6c, n = 3) wird beschrieben. Die
Boronsäuren 2 und 5 sind durch Umsetzung von PhMeSi(CH2CH=CH2)2 (1) und Si(C6H4-4-SiMe2(CH2CH=CH2))4 (4a)
mit HBBr2·SMe2 und anschließender Hydrolyse zugänglich, während 3 und 6a - 6c durch Hydroborierung von 1 und 4a -
c mit BH3·SMe2 und anschließender Oxidation mit H2O2 erhalten werden. Die Einkristallröntgenstruktur von 6a zeigt,
dass das Molekül aufgrund von π-π-Wechselwirkungen und der Ausbildung von Wasserstoffbrückenbindungen Teil eines
zweidimensionalen Netzwerks ist.
Ein weiterer Schwerpunkt der Arbeit widmet sich der Synthese und Charakterisierung von Dendrimeren der 0.
und 1. Generation mit symmetrisch substituiertem Porphyrin-Grundgerüst als multifunktionalem Kern. Hierbei werden
zunächst die allyl-terminierten Bromide 1-Br-4-Si(CH2CH=CH2)nMe3-nC6H4 (n =1, 2) bzw. die Dendronen -Br-4-C6H4-
Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (n = 0, 1, 2) in die aromatischen Aldehyde 1-HOC-4-Si(CH2CH=CH2)nMe3-nC6H4
(2b, n = 1; 2c, n = 2) bzw. 1-HOC-4-C6H4-Si(C6H4-4-Si(CH2CH=CH2)nMe3-n)3 (4a, n = 0; 4b, n = 1; 4c, n =2) überführt.
Aus diesen werden nach der Methode von Lindsey durch Umsetzung mit Pyrrol, BF3·OEt2 und DDQ die entsprechenden
Porphyrine H2T(-4-Si(CH2CH=CH2)nMe3-nC6H4)P (5b, n = 1; 5c, n = 2) bzw. H2T(-4-C6H4-Si(C6H4-4-
Si(CH2CH=CH2)nMe3-n)P (7a, n = 0; 7b, n = 1; 7c, n =2) aufgebaut. Deren Komplexierung mit Zn(OAc)2 liefert die Zn-
Porpyrine Zn(II) T(-4-Si(CH2CH=CH2)nMe3-nC6H4)P (6a, n = 1; 6b, n = 2) bzw. Zn(II) T(-4-C6H4-Si(C6H4-4-
Si(CH2CH=CH2)nMe3-n)P (8a, n = 0; 8b, n = 1; 8c, n =2).
Ausgehend von 5b und 5c sind Porphyrine mit terminalen Hydroxyl-Carbosilan-Einheiten via Hydroborierung-
Oxidation zugänglich. Diese Verbindungen einschließlich der entsprechenden Zn-Komplexe sind aufgrund ihrer
Fähigkeit zur Ausbildung von Wasserstoffbrücken-Netzwerken in hohem Maße zum Aufbau von supramolekularen
Strukturen geeignet. Anhand der Einkristallröntgenstruktur-Analyse von Zn[T(4-Si((CH2)3-OH)Me2-C6H4)P] 10a ist
ersichtlich, dass dieses Metalloporphyrin aufgrund von dirigierenden Wasserstoffbrücken Teil eines selbst
organisierenden Porphyrin-Netzwerks darstellt und darum einzigartige strukturelle Eigenschaften aufweist. Die
Einkristallröntgenstrukturen von 5b, 5c, 6b und 7b werden ebenfalls vorgestellt.
|
9 |
Steuerung von Fluorierungsreaktionen durch Wasserstoffbrückenbindungen in der Koordinationssphäre von Platin-Fluorido-KomplexenSander, Stefan 31 March 2023 (has links)
Die vorliegende Arbeit beinhaltet Studien zur Darstellung, Charakterisierung und Reaktivität von Platin-Fluorido-Komplexen, die 2-(3-Methyl)indolyl-substituierte Phosphan-Liganden besitzen, welche über die Indolyl-Einheiten Wasserstoffbrückenbindungen zu Fluorido-Liganden oder Poly(hydrogenfluorid)¬fluorid-Anionen in der äußeren Ligandensphäre ausbilden. Die Darstellung der Platin-Fluorido-Komplexe gelang dabei über zwei verschiedene Syntheserouten. Die Reaktion von Chlorido-Vorläuferkomplexen mit Tetramethylammoniumfluorid führte zur Deprotonierung der Indolyl-NH-Protonen und einer damit verbundenen Cyclometallierung der Phosphan-Liganden am Platinzentralmetall. Bei Zugabe von Fluorwasserstoff-Quellen erfolgte die Bildung eines Platin-Fluorido-Komplexes, mit dem die Aktivierung von CO zu einem Carbamoyl-Komplex sowie von einem Inamid zu einem ungewöhnlichen Oxazol-Derivat gelang. Eine weitere Möglichkeit zur Darstellung von Platin-Fluorido-Komplexen eröffnete sich durch die Reaktion von Platin-Methyl-Verbindungen mit HF-Quellen. Hierbei bildeten sich Fluorido-Komplexe, bei denen die beiden trans-ständigen Indolylphosphan-Liganden intramolekulare Wasserstoffbrücken zum platingebundenen Fluoratom aufbauen. Die Identität der Fluorido-Komplexe wurde mittels 1H-, 19F , 31P{1H}- sowie 1H,15N-HMBC-NMR-Spektroskopie, IR-Spektroskopie sowie teilweise durch Röntgenstrukturanalysen untersucht. Durch gezielte Veränderungen des zum Fluorido-Liganden trans-ständigen Aryl-Liganden konnten zudem die Struktur-Eigenschafts-Beziehungen näher ermittelt werden. Die Existenz der Wasserstoffbrücken in der äußeren Koordinationssphäre zum Fluorido-Liganden ermöglichte bisher beispiellose Reaktivitäten. So wurde in Modellreaktionen die elektrophile Aktivierung von Alkinen bei gleichzeitiger Bereitstellung des dissoziierten Fluorido-Liganden in der äußeren Koordinationssphäre beobachtet. Hierauf basierend wurden selektive, katalytische Umsetzungen von Alkinen zu (Z)-Fluoralkenen entwickelt. / Studies on the formation, characterisation and reactivity of platinum fluorido complexes bearing 2-(3-methyl)indolyl substituted phosphine ligands, which allow for the generation of hydrogen bonding to the fluorido ligand as well as polyfluorides in the outer coordination-sphere are presented. The formation of the platinum fluorido complexes was achieved by two different synthetic routes. Using tetramethylammonium fluoride (TMAF) for an Cl/F exchange at chlorido precursor complexes led to the formation of cyclometallated platinum complexes due to deprotonation of the indolyl NH group of the phosphine ligands. Treatment of the cyclometallated complex with HF-sources led to the formation of a platinum fluorido compound, which was applied in the electrophilic activation of carbon monoxide as well as an ynamide generating a carbamoyl complex and an exceptional metal bound oxazole derivative, respectively. Additionally, platinum fluorido complexes were accessible through protonation of methyl ligands of suitable precursor complexes. Using this route, fluorido complexes bearing trans coordinated indolylphosphine ligands are formed, which allow for the generation of two hydrogen bonds to the fluorido ligand. The structure of the fluorido complexes were analysed by 1H-, 19F-, 31P{1H}- and 1H,15N-HMBC NMR data, IR-spectroscopy and in part by single crystal X-ray diffraction. Variation of the aryl ligands in a mutually trans position to the platinum bound fluorine atom gave an insight on the structure-property relationships of the fluorido complexes. The existence of outer-sphere hydrogen bonding to the fluorido ligands allowed for unprecedented reactivities. Thus, model reactions revealed complexes bearing a pendant fluoride in the coordination sphere while at the same time an alkyne is activated at the platinum centre. Based on this, catalytic hydrofluorination reactions of unactivated alkynes to provide selectively (Z)-fluoroalkenes were developed.
|
10 |
Crystal structure of methanol solvate of a macrocycle bearing two flexible side-armsAmrhein, Felix, Schwarzer, Anke, Mazik, Monika 17 April 2024 (has links)
Di-tert-butyl N,N′-{[13,15,28,30,31,33-hexaethyl-3,10,18,25,32,34-hexaazapentacyclo[25.3.1.15,8.112,16.120,23]tetratriaconta-1(31),3,5,7,9,12(33),13,15,18,20,22,24,27,29-tetradecaene-14,29-diyl]bis(methylene)}dicarbamate methanol disolvate, C52H72N8O4·2CH3OH, was found to crystallize in the space group P21/c with one half of the macrocycle (host) and one molecule of solvent (guest) in the asymmetric unit of the cell, i.e. the host molecule is located on a crystallographic symmetry center. Within the 1:2 host–guest complex, the solvent molecules are accommodated in the host cavity and held in their positions by O—H⋯N and N—H⋯O bonds, thus forming ring synthons of graph set R22(7). The connection of the 1:2 host-guest complexes is accomplished by C—H⋯O, C—H⋯N and C—H⋯π interactions, which create a three-dimensional supramolecular network.
|
Page generated in 0.2425 seconds