Return to search

Dynamical Systems in Categories / Dynamische Systeme in Kategorien

In this article we establish a bridge between dynamical systems, including topological and measurable dynamical systems as well as continuous skew product flows and nonautonomous dynamical systems; and coalgebras in categories having all finite products. We introduce a straightforward unifying definition of abstract dynamical system on finite product categories. Furthermore, we prove that such systems are in a unique correspondence with monadic algebras whose signature functor takes products with the time space. We substantiate that the categories of topological spaces, metrisable and uniformisable spaces have exponential objects w.r.t. locally compact Hausdorff, σ-compact or arbitrary time spaces as exponents, respectively. Exploiting the adjunction between taking products and exponential objects, we demonstrate a one-to-one correspondence between monadic algebras (given by dynamical systems) for the left-adjoint functor and comonadic coalgebras for the other. This, finally, provides a new, alternative perspective on dynamical systems.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-129909
Date09 December 2013
CreatorsBehrisch, Mike, Kerkhoff, Sebastian, Pöschel, Reinhard, Schneider, Friedrich Martin, Siegmund, Stefan
ContributorsTechnische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, text/plain, text/plain, text/plain, application/pdf, application/zip
Relationdcterms:isPartOf:Preprint / Technische Universität Dresden ; MATH-AL 2013,05

Page generated in 0.0026 seconds