Return to search

Dualidade de Poincaré e invariantes cohomológicos

Made available in DSpace on 2014-06-11T19:30:22Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-03-31Bitstream added on 2014-06-13T19:19:04Z : No. of bitstreams: 1
cellini_cp_me_sjrp.pdf: 781641 bytes, checksum: 70ed1b385d132f8255370c0014be09b4 (MD5) / Neste trabalho são abordados alguns aspectos da teoria de dualidade. Ele pode ser dividido em três partes principais. Na primeira demonstramos o teorema de Dualidade de Poincaré para variedades (sem bordo) orientáveis. Para tanto, fez-se necessário o uso do limite direto e cohomologia com suporte compacto. Na segunda definimos grupos de dualidade, em particular, grupo de dualidade de Poincaré, apresentamos alguns resultados e observações sobre a relação existente entre tais grupos e os grupos fundamentais de variedades asféricas fechadas, que é ainda um problema em aberto. Finalmente, alguns resultados envolvendo invariantes cohomológicos ends e grupos de dualidade são apresentados. / In this work we consider some aspects of duality theory. It can be divided in three principal parts. In the first we prove the Poincaré Duality theorem for orientable manifolds (without boundary). For that, it is necessary the use of the direct limit and cohomology with compact supports. In the second part we de¯ne duality groups, in particular, Poincaré duality groups, we introduce some results and observations about the relationship between such groups and fundamental groups of aspherical closed manifolds, that still is an open problem. Finally, some results envolving the cohomological invariant ends and duality groups are presented.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/99831
Date31 March 2008
CreatorsCellini, Caroline Paula [UNESP]
ContributorsUniversidade Estadual Paulista (UNESP), Fanti, Ermínia de Lourdes Campello [UNESP]
PublisherUniversidade Estadual Paulista (UNESP)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format107 f. : il.
SourceAleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP
Rightsinfo:eu-repo/semantics/openAccess
Relation-1, -1

Page generated in 0.0027 seconds