Le quotient d'un espace vectoriel de dimension finie par l'action d'un sous-groupe fini d'automorphismes est une variété en général singulière. Sous bonnes hypothèses, la correspondance de McKay relie la géométrie de bonnes résolutions des singularités aux représentations du groupe. Pour le schéma de Hilbert de points sur le plan affine, nous étudions comment les différentes correspondances (McKay, McKay duale et McKay multiplicative) sont reliées les unes aux autres. A cette fin, nous calculons des formules combinatoires pour les fibrés vectoriels usuels sur le schéma de Hilbert de points sur le plan affine. Parallèlement à ces questions, nous étudions le comportement multiplicatif du théorème de Bridgeland, King \& Reid construisant la correspondance de McKay pour le schéma de Hilbert de points sur le plan affine. Dans une dernière partie, nous calculons les classes de Chern du fibré tangent au schéma de Hilbert de points sur le plan affine.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007177 |
Date | 27 September 2004 |
Creators | Boissière, Samuel |
Publisher | Université de Nantes |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds