• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conjecture n! et généralisations

Aval, Jean-Christophe 12 December 2001 (has links) (PDF)
Cette thèse est consacrée au problème de combinatoire algébrique appelée conjecture n!. <br /><br />Plus explicitement, on étudie la structure de certains espaces notés M_mu et indexés par les partitions mu de l'entier n. Chaque espace M_mu est le cône de dérivation d'un polynôme Delta_mu, généralisant en deux alphabets le déterminant de Vandermonde. Le coeur de ce travail, motivé par l'interprétation de certains polynômes de Macdonald en termes de multiplicité des représentations irréductibles du S_n-module M_mu, est la conjecture n!, énoncée en 1991 par A. Garsia et M. Haiman et récemment prouvée par ce dernier. <br /><br />On s'intéresse ici tout d'abord à l'explicitation de bases monomiales des espaces M_mu. Cette approche est très liée à l'étude de l'idéal annulateur de Delta_mu et nous conduit à introduire certains opérateurs de dérivation, dits opérateurs de sauts. On obtient une base monomiale explicite et une description de l'idéal annulateur pour les partitions en équerres, et pour le sous-espace en un alphabet M_mu(X) avec une partition mu quelconque. <br /><br />Les opérateurs de sauts se révèlent cruciaux pour l'introduction et l'étude de généralisations de la conjecture n!. Dans le cas des partitions trouées (approche récursive de la conjecture n!), l'obtention d'une base explicite du sous-espace en un alphabet permet de traiter une spécialisation de la fondamentale récurrence à quatre termes. Dans le cas des diagrammes à plusieurs trous, l'introduction de sommes de cônes de dérivation permet d'énoncer une conjecture généralisant la conjecture n!, supportée par l'obtention d'une borne supérieure et la structure du sous-espace en un alphabet.
2

Modèle de Ruijsenaars-Schneider supersymétrique et superpolynômes de Macdonald

Veilleux, Vincent 13 April 2018 (has links)
Le modèle de Ruijsenaars-Schneider trigonométrique (tRS) quantique est un problème à N corps relativiste intégrable qui généralise le modèle de Calogero-Moser- Sutherland trigonométrique (tCMS). Les fonctions propres du modèle tRS sont les polynômes de Macdonald. La limite non relativiste qui relie les modèles tRS et tCMS est la même qui lie les polynômes de Macdonald et de Jack, les fonctions propres du modèle tCMS. Le but de ce mémoire est d'explorer la possibilité d'étendre le succès obtenu avec l'extension supersymétrique du modèle tCMS au modèle tRS. Le cas échéant, les superpolynômes de Macdonald pourraient être définis. Dans l'approche considérée, obtenir un coproduit diagonal de l'algèbre de Hecke est essentiel, mais n'a pas été possible pour TV > 2. On présente donc les résultats partiels connus pour le cas supersymétrique à deux et trois variables ainsi que la nature des obstacles qui, jusqu'à maintenant, ont empêché d'obtenir la généralisation voulue.
3

Les polynômes de Macdonald dans le superespace et le modèle Ruijsenaars-Schneider supersymétrique

Blondeau-Fournier, Olivier 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / La théorie des superpolynômes symétriques ([DLM03, DLM06]) est généralisée avec l’introduction d’une nouvelle base de superfonctions qui dépend de deux paramètres q et t. Cette nouvelle base, que l’on appelle les polynômes de Macdonald dans le superespace (ou simplement, les superpolynômes de Macdonald), généralise toutes les autres bases de superfonctions connues. Celles-ci sont retrouvées via différentes spécialisations (ou limites) de q et t. On démontre que les superpolynômes de Macdonald sont uniquement déterminés par les deux propriétés suivantes. Premièrement, ils se décomposent de façon triangulaire dans la base des superfonctions monomiales (par rapport à l’ordre de dominance entre les superpartitions). Deuxièmement, ils sont orthogonaux par rapport à un produit scalaire donné dans la base des superfonctions sommes de puissances et qui dépend de q, t. L’étape clef pour démontrer ce résultat est la connexion avec la théorie des polynômes non symétriques de Macdonald. En fait, il est montré que les superpolynômes de Macdonald sont également donnés par un processus de symétrisation particulier des polynômes non symétriques de Macdonald. Cette connexion peut être alors exploitée pour obtenir une famille d’opérateurs qui est diagonale dans la base des superpolynômes de Macdonald ainsi qu’une seconde relation d’orthogonalité donnée par l’évaluation d’un terme constant. Ces deux éléments, i.e. famille d’opérateurs et orthogonalité (analytique), permettent de relier les superpolynômes de Macdonald à un problème de mécanique quantique supersymétrique généralisant le modèle Ruijsenaars-Schneider (RS). L’hamiltonien de ce modèle est défini par l’anticommutateur d’une supercharge qui est le générateur de la transformation supersymétrique. La structure algébrique sous-jacente à ce modèle est l’algèbre de Poincaré supersymétrique (i.e. une algèbre de Lie graduée). Tous les états propres de l’hamiltonien sont donnés par le produit de la fonction d’onde de l’état du vide par les superpolynômes de Macdonald. L’intégrabilité du modèle est également démontrée. / The theory of symmetric superpolynomials ([DLM03, DLM06]) is further extended with the introduction of a family of superpolynomials that depends upon two parameters, denoted by q and t. This new basis, that can be called Macdonald polynomials in superspace (or simply stated, Macdonald superpolynomials), generalizes all the previously discovered bases of superpolynomials. These are obtained by the evaluation (or by a limiting process) of the parameters q and t. It is proved that the Macdonald superpolynomials are uniquely defined by the two following properties. First, they decompose triangularly in the monomial basis (with respect to a certain ordering between superpartitions). Second, they are orthogonal with respect to a given scalar product evaluated in the power sum basis and which depends on q and t. The crucial step to prove this result is the connection between Macdonald superpolynomials and the theory of non-symmetric Macdonald polynomials. More precisely, it is showed that the Macdonald superpolynomials can be expressed by a certain symmetrizer acting on the non-symmetric analogue. Using this connection, a family of eigen-operators is obtained, which is diagonalized by the Macdonald superpolynomals basis. In addition, another orthogonality relation that involves a constant term evaluation (referred to as the analytic orthogonality) is obtained. These two elements, i.e. the eigen-operators and the orthogonality (analytic), link the Macdonald superpolynomials to a supersymmetric quantum mechanic model that generalizes the Ruijsenaars-Schneider (RS) model. The Hamiltonian of this model is naturally written as an anticommutator of a supercharge which is the generator of supersymmetric transformation. The underlying algebra of this model is the super Poincaré algebra (i.e. a graded Lie algebra). All the quantum states of the Hamiltonian are given as a product of the ground state function times Macdonald superpolynomials. Finally, the integrability of the supersymmetric RS model is demonstrated.
4

Sur les correspondances de McKay pour le schéma de Hilbert de points sur le plan affine

Boissière, Samuel 27 September 2004 (has links) (PDF)
Le quotient d'un espace vectoriel de dimension finie par l'action d'un sous-groupe fini d'automorphismes est une variété en général singulière. Sous bonnes hypothèses, la correspondance de McKay relie la géométrie de bonnes résolutions des singularités aux représentations du groupe. Pour le schéma de Hilbert de points sur le plan affine, nous étudions comment les différentes correspondances (McKay, McKay duale et McKay multiplicative) sont reliées les unes aux autres. A cette fin, nous calculons des formules combinatoires pour les fibrés vectoriels usuels sur le schéma de Hilbert de points sur le plan affine. Parallèlement à ces questions, nous étudions le comportement multiplicatif du théorème de Bridgeland, King \& Reid construisant la correspondance de McKay pour le schéma de Hilbert de points sur le plan affine. Dans une dernière partie, nous calculons les classes de Chern du fibré tangent au schéma de Hilbert de points sur le plan affine.
5

Contributions to tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials / Contributions aux modèles de tenseurs, nombres de Hurwitz et polynômes de Macdonald-Koornwinder

Nguyen, Viet anh 18 December 2017 (has links)
Dans cette thèse, j’étudie trois sujets reliés : les modèles de tenseurs, les nombres de Hurwitz et les polynômes de Macdonald-Koornwinder. Les modèles de tenseurs généralisent les modèles de matrices en tant qu’une approche à la gravité quantique en dimension arbitraire (les modèles de matrices donnent une version bidimensionnelle). J’étudie un modèle particulier qui s’appelle le modèle quartique mélonique. Sa spécialité est qu’il s’écrit en termes d’un modèle de matrices qui est lui-même aussi intéressant. En utilisant les outils bien établis, je calcule les deux premiers ordres de leur 1=N expansion. Parmi plusieurs interprétations, les nombres de Hurwitz comptent le nombre de revêtements ramifiés de surfaces de Riemann. Ils sont connectés avec de nombreux sujets en mathématiques contemporaines telles que les modèles de matrices, les équations intégrables et les espaces de modules. Ma contribution principale est une formule explicite pour les nombres doubles avec 3-cycles complétées d’une part. Cette formule me permet de prouver plusieurs propriétés intéressantes de ces nombres. Le dernier sujet de mon étude est les polynôme de Macdonald et Koornwinder, plus précisément les identités de Littlewood. Ces polynômes forment les bases importantes de l’algèbre des polynômes symétriques. Un des problèmes intrinsèques dans la théorie des fonctions symétriques est la décomposition d’un polynôme symétrique dans la base de Macdonald. La décomposition obtenue (notamment si les coefficients sont raisonnablement explicites et compacts) est nommée une identité de Littlewood. Dans cette thèse, j’étudie les identités démontrées récemment par Rains et Warnaar. Mes contributions incluent une preuve d’une extension d’une telle identité et quelques progrès partiels vers la généralisation d’une autre. / In this thesis, I study three related subjects: tensor models, Hurwitz numbers and Macdonald-Koornwinder polynomials. Tensor models are generalizations of matrix models as an approach to quantum gravity in arbitrary dimensions (matrix models give a 2D version). I study a specific model called the quartic melonic tensor model. Its specialty is that it can be transformed into a multi-matrix model which is very interesting by itself. With the help of well-established tools, I am able to compute the first two leading orders of their 1=N expansion. Among many interpretations, Hurwitz numbers count the number of weighted ramified coverings of Riemann surfaces. They are connected to many subjects of contemporary mathematics such as matrix models, integrable equations and moduli spaces of complex curves. My main contribution is an explicit formula for one-part double Hurwitz numbers with completed 3-cycles. This explicit formula also allows me to prove many interesting properties of these numbers. The final subject of my study is Macdonald-Koornwinder polynomials, in particular their Littlewood identities. These polynomials form important bases of the algebra of symmetric polynomials. One of the most important problems in symmetric function theory is to decompose a symmetric polynomial into the Macdonald basis. The obtained decomposition (in particular, if the coefficients are explicit and reasonably compact) is called a Littlewood identity. In this thesis, I study many recent Littlewood identities of Rains and Warnaar. My own contributions include a proof of an extension of one of their identities and partial progress towards generalization of one another.

Page generated in 0.0648 seconds