Die Arbeit beschäftigt sich mit Faltungsoperatoren auf Kegeln, die in Lebesgueräumen L^p(R^2) (1<p<\infty) von Funktionen auf der Ebene wirken.
Es werden asymptotische Spektraleigenschaften der zugehörigen Finite Sections studiert. Im Falle p=2 (Hilbertraum) wird das Invertierbarkeitsproblem von Operatoren vom Faltungstyp auf Kegeln mit Hilfe der Methode der Standard-Modell-Algebren untersucht.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:ch1-200400067 |
Date | 28 January 2004 |
Creators | Mascarenhas, Helena |
Contributors | TU Chemnitz, Fakultät für Mathematik |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf, text/plain, application/zip |
Page generated in 0.0018 seconds