L'objet de cette thèse est l'étude de quelques problèmes de géométrie différentielle, dans les cadres complexe et presque complexe. Nous donnons d'abord des formules de type Bochner-Kodaira-Nakano pour des fibrés hermitiens au-dessus de variétés respectivement hermitiennes, presque kählériennes et presque complexes. Puis dans un deuxième temps, à l'aide d'une des formules précédentes, nous obtenons dans le cas complexe des estimées asymptotiques d'une partie du spectre de certains opérateurs différentiels : considérant une $(1,1)$-forme réelle fermée $\alpha$ (non nécessairement entière) sur une variété complexe compacte de dimension $n$, nous construisons une suite (indexée par $k$) de fibrés en droites hermitiens dont les formes de courbure approchent $k\alpha$. Les estimées asymptotiques portent sur le bas du spectre des laplaciens antiholomorphes associés aux fibrés, et la plus significative fait intervenir l'intégrale de $\alpha^n$ au-dessus des points d'indice 0 ou 1 de la variété. Elle n'est pertinente que si cette dernière intégrale est strictement positive.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002098 |
Date | 30 October 2002 |
Creators | LAENG, Laurent |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds