• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse locale dans les variétés presque complexes

Bertrand, Florian 07 December 2007 (has links) (PDF)
Dans cette thèse, nous abordons certains aspects de l'analyse locale dans les variétés presque complexes. Dans un premier temps, nous étudions le fibré cotangent qui est un outil important pour l'analyse et la géométrie complexe. Nous construisons un relevé de structure presque complexe, à l'aide d'une connexion, qui unifie les relevés complets de I.Sato et horizontaux de S.Ishihara et K.Yano. Par ailleurs, nous dégageons les principales propriétés analytiques et symplectiques du relevé ainsi construit. <br />Dans les deux études qui suivent, nous nous intéressons aux propriétés locales des domaines pseudoconvexes de type de D'Angelo fini d'une variété presque complexe de dimension réelle quatre. Nous construisons des fonctions locales pic plurisousharmoniques, généralisant des travaux de J.E.Fornaess et N.Sibony. La construction d'une telle famille de fonctions permet d'établir des propriétés d'attraction et de localisation des disques pseudoholomorphes. En particulier, elle réduit l'étude de la pseudométrique de Kobayashi à un problème purement local. Le comportement asymptotique de cette pseudométrique est relié à certaines questions fascinantes d'analyse locale dans les variétés comme les phénomènes de prolongement au bord des difféomorphismes ou encore la classification des domaines, et fournit des informations intéressantes sur les propriétés géométriques et dynamiques de la variété. Nous donnons alors des estimées locales de cette pseudométrique au voisinage du bord. De plus, dans le cas de stricte pseudoconvexité, nous obtenons des estimées très fines nous permettant d'étudier les liens entre l'hyperbolicité au sens de Kobayashi et l'hyperbolicité au sens de Gromov ; nous généralisons ainsi, au cadre presque complexe, un résultat dû à Z.M.Balogh et M.Bonk.
2

Estimations spectrales asymptotiques en géométrie hermitienne

LAENG, Laurent 30 October 2002 (has links) (PDF)
L'objet de cette thèse est l'étude de quelques problèmes de géométrie différentielle, dans les cadres complexe et presque complexe. Nous donnons d'abord des formules de type Bochner-Kodaira-Nakano pour des fibrés hermitiens au-dessus de variétés respectivement hermitiennes, presque kählériennes et presque complexes. Puis dans un deuxième temps, à l'aide d'une des formules précédentes, nous obtenons dans le cas complexe des estimées asymptotiques d'une partie du spectre de certains opérateurs différentiels : considérant une $(1,1)$-forme réelle fermée $\alpha$ (non nécessairement entière) sur une variété complexe compacte de dimension $n$, nous construisons une suite (indexée par $k$) de fibrés en droites hermitiens dont les formes de courbure approchent $k\alpha$. Les estimées asymptotiques portent sur le bas du spectre des laplaciens antiholomorphes associés aux fibrés, et la plus significative fait intervenir l'intégrale de $\alpha^n$ au-dessus des points d'indice 0 ou 1 de la variété. Elle n'est pertinente que si cette dernière intégrale est strictement positive.

Page generated in 0.0773 seconds