• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse locale dans les variétés presque complexes

Bertrand, Florian 07 December 2007 (has links) (PDF)
Dans cette thèse, nous abordons certains aspects de l'analyse locale dans les variétés presque complexes. Dans un premier temps, nous étudions le fibré cotangent qui est un outil important pour l'analyse et la géométrie complexe. Nous construisons un relevé de structure presque complexe, à l'aide d'une connexion, qui unifie les relevés complets de I.Sato et horizontaux de S.Ishihara et K.Yano. Par ailleurs, nous dégageons les principales propriétés analytiques et symplectiques du relevé ainsi construit. <br />Dans les deux études qui suivent, nous nous intéressons aux propriétés locales des domaines pseudoconvexes de type de D'Angelo fini d'une variété presque complexe de dimension réelle quatre. Nous construisons des fonctions locales pic plurisousharmoniques, généralisant des travaux de J.E.Fornaess et N.Sibony. La construction d'une telle famille de fonctions permet d'établir des propriétés d'attraction et de localisation des disques pseudoholomorphes. En particulier, elle réduit l'étude de la pseudométrique de Kobayashi à un problème purement local. Le comportement asymptotique de cette pseudométrique est relié à certaines questions fascinantes d'analyse locale dans les variétés comme les phénomènes de prolongement au bord des difféomorphismes ou encore la classification des domaines, et fournit des informations intéressantes sur les propriétés géométriques et dynamiques de la variété. Nous donnons alors des estimées locales de cette pseudométrique au voisinage du bord. De plus, dans le cas de stricte pseudoconvexité, nous obtenons des estimées très fines nous permettant d'étudier les liens entre l'hyperbolicité au sens de Kobayashi et l'hyperbolicité au sens de Gromov ; nous généralisons ainsi, au cadre presque complexe, un résultat dû à Z.M.Balogh et M.Bonk.
2

Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg

Petit, Camille 19 June 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière.
3

Autour de l'analyse géométrique. 1) Comportement au bord des fonctions harmoniques 2) Rectifiabilité dans le groupe de Heisenberg / Around geometric analysis 1) Boundary behavior of harmonic functions 2) Rectifiability in the Heisenberg group

Petit, Camille 19 June 2012 (has links)
Dans cette thèse, nous nous intéressons à deux thèmes d'analyse géométrique. Le premier concerne le comportement asymptotique des fonctions harmoniques en relation avec la géométrie, sur des graphes et des variétés. Nous étudions des critères de convergence au bord des fonctions harmoniques, comme celui de la bornitude non-tangentielle, de la finitude de l'énergie ou encore de la densité de l'énergie. Nous nous plaçons pour cela dans différents cadres comme les graphes hyperboliques au sens de Gromov, les variétés hyperboliques au sens de Gromov, les graphes de Diestel-Leader ou encore dans un cadre abstrait pour obtenir des résultats pour les points du bord minimal de Martin. Les méthodes probabilistes utilisées exploitent le lien entre les fonctions harmoniques et les martingales. Le deuxième thème abordé dans cette thèse concerne l'étude des propriétés des ensembles rectifiables de dimension 1 dans le groupe de Heisenberg, en relation avec des opérateurs d'intégrales singulières. Nous étendons à ce contexte sous-riemannien une partie des résultats de la théorie des ensembles uniformément rectifiables de David et Semmes. Nous obtenons notamment un théorème géométrique du voyageur de commerce qui fournit une condition pour qu'un ensemble Ahlfors-régulier du premier groupe de Heisenberg soit contenu dans une courbe Ahlfors-régulière. / In this thesis, we are interested in two topics of geometric analysis. The first one is concerned with the asymptotic behaviour of harmonic functions in connection with geometry on graphs and manifolds. We study criteria for convergence at boundary of harmonic functions such as non-tangential boundedness, finiteness of non-tangential energy or finiteness of the energy density. We deal with Gromov hyperbolic manifolds, Gromov hyperbolic graphs, Diestel-Leader graphs and with an abstract frame to obtain criteria at minimal Martin boundary points. The methods, coming from probability theory and metric geometry, use the relation between harmonic functions and martingales. The second topic concerns the rectifiability properties of 1-dimensional sets in the Heisenberg group in connection with the boundedness of singular integral operators. We extend to this sub-Riemannian setting parts of the theory of uniformly rectifiable sets due to David and Semmes. In particular, we obtain a geometric traveling salesman theorem which provides a condition for an Ahlfors regular set of the first Heisenberg group to be contained in an Ahlfors regular curve.

Page generated in 0.1368 seconds