Return to search

Simulation numérique et approche orientée connaissance pour la découverte de nouvelles molécules thérapeutiques

L'innovation thérapeutique progresse traditionnellement par la combinaison du criblage expérimental et de la modélisation moléculaire. En pratique, cette dernière approche est souvent limitée par la pénurie de données expérimentales, particulièrement les informations structurales et biologiques. Aujourd'hui, la situation a complètement changé avec le séquençage à haut débit du génome humain et les avancées réalisées dans la détermination des structures tridimensionnelles des protéines. Cette détermination permet d'avoir accès à une grande quantité de données pouvant servir à la recherche de nouveaux traitements pour un grand nombre de maladies. À cet égard, les approches informatiques permettant de développer des programmes de criblage virtuel à haut débit offrent une alternative ou un complément aux méthodes expérimentales qui font gagner du temps et de l'argent dans la découverte de nouveaux traitements. Appliqué aux grandes bases de données moléculaires, le criblage virtuel à haut débit permet de limiter le criblage expérimental en fournissant, pour chaque cible biologique visée, des molécules potentiellement intéressantes au moyen de méthodes informatiques adaptées. Cependant, la plupart de ces approches souffrent des mêmes limitations. Le coût et la durée des temps de calcul pour évaluer la fixation d'une collection de molécules à une cible, qui est considérable dans le contexte du haut débit, ainsi que la précision des résultats obtenus sont les défis les plus évidents dans le domaine. Le besoin de gérer une grande quantité de données hétérogènes est aussi particulièrement crucial. Pour surmonter les limitations actuelles du criblage virtuel à haut débit et ainsi optimiser les premières étapes du processus de découverte de nouveaux médicaments, j'ai mis en place une méthodologie innovante permettant, d'une part, de gérer une masse importante de données hétérogènes et d'en extraire des connaissances et, d'autre part, de distribuer les calculs nécessaires sur les grilles de calcul comportant plusieurs milliers de processeurs, le tout intégré à un protocole de criblage virtuel en plusieurs étapes. L'objectif est la prise en compte, sous forme de contraintes, des connaissances sur le problème posé afin d'optimiser la précision des résultats et les coûts en termes de temps et d'argent du criblage virtuel. Les approches méthodologiques développées ont été appliquées avec succès à une étude concernant le problème de résistance du VIH aux antiviraux, projet soutenu par la fondation Bill et Melinda Gates dans le cadre d'un projet de collaboration avec le CIRCB au Cameroun.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00609018
Date07 May 2010
CreatorsGhemtio, Leo
PublisherUniversité Henri Poincaré - Nancy I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds