Le cadre de cette thèse est l'étude de l'anneau des cycles algébriques de la jacobienne d'une courbe lisse, tensorisé par Q. Les cycles sont étudiés sous l'angle de la décomposition de Beauville, c'est-a-dire celle en espaces propres pour les opérateurs k_* et k^* associés aux homothéties k : x -> kx . Plus précisément, on s'intéresse aux cycles tautologiques, ceux dans le plus petit sous-anneau contenant (le plongement de) la courbe, stable par les opérations élémentaires : intersection, produit de Pontryagin, opérateurs k_* et k^*.<br /><br /> L'objectif de cette thèse est de montrer comment calculer de nouvelles relations entre cycles modulo équivalence algébrique en fonction des systèmes linéaires admis par la courbe. <br /><br />Le point de départ de ces calculs est une formule obtenue par Elisabetta Colombo et Bert van Geemen précisant la classe algébrique d'un pinceau (considéré comme sous-variété du produit symétrique de la courbe) dont ils déduisent de premiers résultats d'annulation. On étend cette formule aux systèmes linéaires de dimension supérieure (et à l'anneau de Chow) pour obtenir d'autres résultats d'annulation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00012015 |
Date | 12 December 2005 |
Creators | Herbaut, Fabien |
Publisher | Université de Nice Sophia-Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds