La présente étude porte sur le comportement mécanique de deux types de supports de catalyseurs utilisés industriellement en hydrotraitement des résidus. Ces supports extrudés, fabriqués par IFPEN, sont constitués d’alumine de transition γ avec un taux de porosité proche de 70%. La porosité du premier matériau est uniquement constituée de mésopores (< 50 nm). La porosité du second matériau est constituée de mésopores et de macropores (jusqu’à 20 µm). Les niveaux de sollicitation en service étant très peu connus, cette étude s’attache à décrire de manière précise et exhaustive le comportement mécanique de ces supports sous une large gamme de sollicitations, et à identifier les différents mécanismes de ruine possibles. L’objectif final est de mieux comprendre les relations entre les paramètres microstructuraux et les propriétés mécaniques afin d’identifier des leviers d’amélioration de la tenue mécanique des supports. Dans un premier temps, une méthodologie adaptée de caractérisation mécanique est établie. Le comportement des supports est étudié d’une part en traction, à l’aide d’essais de flexion trois points et d’écrasement diamétral, et d’autre part, en compression sous différents taux de triaxialité, à l’aide d’essais de compression uniaxiale et hydrostatique et d’essais de micro-indentation sphérique. Les différents mécanismes responsables de la ruine des supports sont identifiés au moyen de techniques d’imagerie telles que la microscopie électronique à balayage et la micro-tomographie à rayons X. En traction, le comportement est fragile avec l’amorçage de la rupture sur un défaut critique. En compression, une transition fragile / quasi-plastique du comportement est observée avec l’augmentation du taux de confinement. Cette quasi-plasticité s’exprime en particulier à travers un phénomène de densification de la macroporosité. Dans un deuxième temps, un critère de rupture est identifié pour chaque type de matériau en vue de représenter sur une même surface de charge les différents types de comportement et phénomènes physiques observés. Cette identification est réalisée en couplant les essais d’indentation sphérique à une analyse numérique. Des critères faisant intervenir la pression hydrostatique permettent de rendre compte de la forte dissymétrie du comportement des matériaux en traction et en compression. Enfin, dans un souci de se rapprocher des sollicitations subies par les supports de catalyseurs dans un réacteur en service, le comportement d’un empilement de supports est étudié en compression œdométrique. L’analyse de cet essai par tomographie à rayons X permet de déterminer les différents mécanismes de ruine intervenant au sein d’un empilement, en particulier ceux responsables de la génération de fines. Les résultats illustrent la pertinence de la caractérisation en flexion et en indentation des supports de catalyseurs seuls pour prévoir leur comportement au sein d’un empilement en compression. / In this work, we study the mechanical behaviour of two types of catalysts supports produced by IFPEN and industrially used in residues hydrotreating. Those extruded supports are made of transition γ-alumina with about 70% of porous volume. The first material’s porosity is exclusively composed of mesopores (< 50 nm). The porosity of the second material is composed of both mesopores and macropores (up to 20 µm). Because of the limited knowledge of the stress fields in embedded catalysts supports in use in a reactor, this study aims at precisely and exhaustively describing the mechanical behaviour of those supports under a wide range of stresses, and identifying the possible damage mechanisms. The final objective is to better understand the influence of microstructural parameters on the mechanical properties of the supports in order to propose some leads about how to improve their mechanical strength. First, an adequate mechanical characterization methodology is set. On one hand, the tensile mechanical behaviour of the supports is studied with three-point bending and diametrical crushing tests. On the other hand, their compressive behaviour under various triaxiality rates is characterized in uniaxial and hydrostatic compression, and by spherical micro-indentation. The different damaging mechanisms are identified by imaging techniques such as scanning electronic microscopy and X-ray micro-tomography. Under tensile stresses, the supports exhibit a brittle behaviour and fracture initiates at a critical flaw. Under compressive stresses, a brittle/quasi-plastic transition is observed with increasing the triaxiality rate. The quasi-plasticity is mainly due to the densification of the macroporosity. The second part of the study consists in identifying, for each material, a fracture criterion able to represent every types of behaviour and physical phenomena observed on the same yield surface. This identification is achieved by coupling the spherical indentation tests to a numerical analysis. Fracture criteria involving hydrostatic pressure are well suited to describe the highly dissymmetric mechanical behaviour of the materials in tension and in compression. The last part of this work aims at studying the mechanical behaviour of a stack of supports under œdometric compression in order to produce stress fields more representative of those existing within the supports stacked in a reactor. This test is analysed by X-ray tomography, which allows us to determine/acknowledge the different damaging mechanisms involved in fragments and fines generation. The results illustrate the suitability of the bending and indentation tests to characterize the mechanical properties of a single support and relate them to its mechanical behaviour in a stack of supports under compression.
Identifer | oai:union.ndltd.org:theses.fr/2014ISAL0089 |
Date | 29 September 2014 |
Creators | Staub, Déborah |
Contributors | Lyon, INSA, Chevalier, Jérôme, Meille, Sylvain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds