• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anvil effect in spherical indentation testing on sheet metal

Dhaigude, Mayuresh Mukund 02 June 2009 (has links)
A spherical indentation test is considered to be invalid if there is presence of a visible mark on the side of the sheet metal facing the anvil and exactly below the indentation. With the available standard loads of the conventional testers such as Brinell and Rockwell hardness testers, it is difficult to avoid this anvil effect while dealing with the sheet metals. The penetration depth increases when the thickness of the sheet is reduced at constant indentation pressures. The reason behind this is the change in mode of deformation. When the thickness of the sheet metal is reduced, and the indentation test is carried out on it, then the sheet metal experiences first indentation, then bending, followed by lifting of the sheet from the anvil which leads to a forging mode of deformation. The modes of deformation were identified using a finite element simulation of the indentation process. Plots of normalized depth against normalized thickness were created for the same indentation pressure, and a second order polynomial curve was fitted to the data points. The equation of this curve quantifies the anvil effect. The anvil effect was identified as a function of sheet thickness, indenter radius, indentation load and two material constants. A method to correct this anvil effect was also developed using the equation representing the anvil effect. It is possible to obtain the equivalent geometry of indentation without anvil effect. A MATLAB program is developed to obtain the parameters defining the curve for the anvil effect. Indentation test on a sheet using three different indenters and corresponding loads is required for this method. For accurate prediction of the equivalent depth of indentation, a lower limit of 10 % and upper limit of 80 % for penetration depth (ratio of depth of indentation and thickness of sheet metal) was identified for the spherical indentation testing on the sheet metals. Verification of the curve fitting model was carried out with the indentation experiments on commercially available Niobium, Al2024-T3, Al7075-T6 and 1020 low carbon steel sheets. These tests show good agreement between fit, prediction, and experiments for the anvil effect.
2

Mechanical property measurement by indentation techniques

Janakiraman, Balasubramanian 12 April 2006 (has links)
The mechanical properties of materials are usually evaluated by performing a tensile or hardness test on the sample. Tensile tests are often time consuming, destructive and need specially prepared specimens. On the other hand, there is no direct theoretical correlation between the hardness number and the mechanical properties of a material although phenomenological relationships do exist. The advantages of indentation techniques are that they are non-destructive, quick, and can be applied to small material samples and localized in fashion. Mechanical properties are typically determined from spherical indentation load-depth curves. This process is again a time consuming one and not suitable for situations where a quick assessment is required such as in the sheet metal rolling industry. In the present study, a novel method of measuring mechanical properties of the material by multiple spherical indentations is developed. A series of indentations are made on the substrate with a spherical indenter with different loads. The diameter of the indentation is related to the load applied to determine the mechanical properties of the material, namely the yield strength and the work hardening parameters. To determine the diameter of the indentation quickly, a fiber optic sensing technique is developed. An incident light beam from a semiconductor laser is coupled back into an optical fiber upon reflection from the metal surface. By measuring the diffused light power reflected from the metal surface, the diameter of the indentation is measured. The spherical indentation technique is difficult for real time mechanical property measurement of sheet metal in a processing line. Problems arise as the strip is traveling at 2,000 to 4,000 ft/min (10,000 to 20,000 mm/sec) in the processing line. As a first step in developing a process that could be implemented in a real time processing line, a preliminary study has been conducted for the prediction of yield strength by laser shock processing.
3

Mechanical Behaviour of Gas Turbine Coatings

Eskner, Mats January 2004 (has links)
Coatings are frequently applied on gas turbine components inorder to restrict surface degradation such as corrosion andoxidation of the structural material or to thermally insulatethe structural material against the hot environment, therebyincreasing the efficiency of the turbine. However, in order toobtain accurate lifetime expectancies and performance of thecoatings system it is necessary to have a reliableunderstanding of the mechanical properties and failuremechanisms of the coatings. In this thesis, mechanical and fracture behaviour have beenstudied for a NiAl coating applied by a pack cementationprocess, an air-plasma sprayed NiCoCrAlY bondcoat, a vacuumplasma-sprayed NiCrAlY bondcoat and an air plasma-sprayed ZrO2+ 6-8 % Y2O3topcoat. The mechanical tests were carried out ata temperature interval between room temperature and 860oC.Small punch tests and spherical indentation were the testmethods applied for this purpose, in which existing bending andindentation theory were adopted for interpretation of the testresults. Efforts were made to validate the test methods toensure their relevance for coating property measurements. Itwas found that the combination of these two methods givescapability to predict the temperature dependence of severalrelevant mechanical properties of gas turbine coatings, forexample the hardness, elastic modulus, yield strength, fracturestrength, flow stress-strain behaviour and ductility.Furthermore, the plasma-sprayed coatings were tested in bothas-coated and heat-treated condition, which revealedsignificant difference in properties. Microstructuralexamination of the bondcoats showed that oxidation with loss ofaluminium plays an important role in the coating degradationand for the property changes in the coatings. Keywords:small punch test, miniaturised disc bendingtests, spherical indentation, coatings, NiAl, APS-NiCoCrAlY,VPS-NiCrAlY, mechanical properties
4

Mechanical Behaviour of Gas Turbine Coatings

Eskner, Mats January 2004 (has links)
<p>Coatings are frequently applied on gas turbine components inorder to restrict surface degradation such as corrosion andoxidation of the structural material or to thermally insulatethe structural material against the hot environment, therebyincreasing the efficiency of the turbine. However, in order toobtain accurate lifetime expectancies and performance of thecoatings system it is necessary to have a reliableunderstanding of the mechanical properties and failuremechanisms of the coatings.</p><p>In this thesis, mechanical and fracture behaviour have beenstudied for a NiAl coating applied by a pack cementationprocess, an air-plasma sprayed NiCoCrAlY bondcoat, a vacuumplasma-sprayed NiCrAlY bondcoat and an air plasma-sprayed ZrO<sub>2</sub>+ 6-8 % Y<sub>2</sub>O<sub>3</sub>topcoat. The mechanical tests were carried out ata temperature interval between room temperature and 860oC.Small punch tests and spherical indentation were the testmethods applied for this purpose, in which existing bending andindentation theory were adopted for interpretation of the testresults. Efforts were made to validate the test methods toensure their relevance for coating property measurements. Itwas found that the combination of these two methods givescapability to predict the temperature dependence of severalrelevant mechanical properties of gas turbine coatings, forexample the hardness, elastic modulus, yield strength, fracturestrength, flow stress-strain behaviour and ductility.Furthermore, the plasma-sprayed coatings were tested in bothas-coated and heat-treated condition, which revealedsignificant difference in properties. Microstructuralexamination of the bondcoats showed that oxidation with loss ofaluminium plays an important role in the coating degradationand for the property changes in the coatings.</p><p><b>Keywords:</b>small punch test, miniaturised disc bendingtests, spherical indentation, coatings, NiAl, APS-NiCoCrAlY,VPS-NiCrAlY, mechanical properties</p>
5

Détermination des propriétés mécaniques de céramiques poreuses par essais de microindentation instrumentée sphérique / Mechanical characterization of porous ceramics by spherical instrumented indentation technique

Clément, Phillipe 15 May 2013 (has links)
L’objectif de cette thèse porte sur le développement de nouveaux moyens de caractérisation mécanique de matériaux poreux inorganiques. La technique de microindentation instrumentée avec indenteur sphérique a été utilisée pour déterminer les propriétés mécaniques du plâtre pris, utilisé comme matériau modèle, à deux porosités différentes (30 et 60%vol). Les méthodes analytiques, développées initialement en nanoindentation, ont permis d’extraire la dureté et le module d’élasticité des deux matériaux, ainsi que les courbes contrainte-déformation d’indentation. Une méthodologie d’essai a été notamment détaillée afin de pouvoir appliquer cet essai d’indentation sphérique à l’étude de céramiques à forte porosité. Une approche numérique a permis de compléter les méthodes analytiques et d’identifier une loi de comportement élastoplastique pour le matériau modèle. Un modèle éléments finis 2D-axisymétrique a ainsi été développé pour simuler les essais d’indentation sphérique. Un module d’indentification inverse, MIC2M, a ensuite été utilisé pour identifier les paramètres associés au critère de Drücker-Prager (cohésion, frottement et dilatance) pour minimiser l’erreur entre la courbe expérimentale et numérique. La simulation de l’indentation Vickers, ainsi que des essais de compressions uniaxiaux et œdométriques ont permis de valider les paramètres matériaux identifiés par indentation sphérique. L’utilisation des techniques de tomographie aux rayons X et de microscopie électronique à balayage (MEB) a permis de mettre en évidence une densification du matériau au cours de l’indentation. Aucune fissure macroscopique fragile n’a par contre été observée, confirmant les différences de comportement mécanique entre des céramiques à fort taux de porosité et des céramiques denses. La méthodologie ainsi développée a ensuite été appliquée au cas d’une céramique biorésorbable à base de phosphate de calcium, famille de matériaux largement utilisée pour la substitution osseuse. Des cylindres de ciments brushitique ont subi un vieillissement in vitro d’une durée maximale de deux mois dans une solution de Phosphate Buffered Saline rafraichie. La méthode de microindentation a permis de suivre l’évolution des différents paramètres mécaniques au cours de la cinétique de dégradation des ciments. Les résultats ont montré une bonne corrélation entre les évolutions des propriétés mécaniques et physicochimiques des échantillons, suivies par diffraction des rayons X et MEB. Ainsi, après une dissolution initiale du ciment, la précipitation de nouvelles phases de phosphates de calcium plus stables a entraîné une augmentation des caractéristiques mécaniques en cours de vieillissement, mesurées par indentation. Cette méthode d’essai semble donc être un outil prometteur pour le suivi des propriétés d’explants biomédicaux et, plus généralement, des céramiques à fortes porosités. / The objective of this study is to develop a methodology to characterize the mechanical behaviour of porous inorganic materials. Spherical instrumented indentation tests were used to determine the mechanical properties of a model material, gypsum, with two different porosities (30 and 60% vol.). Classical analytical methods, initially developed for nano-indentation, were used to extract the hardness and the elastic modulus of both materials, as well as stress-strain indentation curves. A methodology has been detailed in order to apply spherical indentation test to study high porous ceramics. To complete this analytical analysis, a numerical approach is used to identify an elastoplastic constitutive law for the material model. A 2D axisymmetric finite element model was developed to simulate spherical indentation tests. An inverse identification module, MIC2M, was then used to identify parameters associated to Drücker-Prager criterion (cohesion, friction and dilatancy) by minimizing the error between the experimental and the simulated indentation curves. These parameters were validated through the numerical simulation of a Vickers indentation test. Uniaxial compression and oedometer tests were also carried out on cylindrical samples to estimate the accuracy of the identified parameters. The mechanisms occurring during indentation were investigated using RX tomography and SEM. A large densified zone was noted below the indented area, with extensive gypsum crystal fracture. No macroscopic brittle crack could be observed confirming the differences between the mechanical behaviour of high porous ceramics and dense ceramics. The methodology developed in this study was applied to calcium phosphate cements, widely used for bone substitution. In-vitro degradation tests were performed on cylindrical samples of cements during 2 months into a refreshed Phosphate Buffered Saline solution. The micro-indentation method was enabled to follow mechanical properties of degraded samples and was discriminant enough to monitor the degradation process and its kinetics. Results showed a good correlation between evolutions of mechanical and physico-chemical properties of the cement investigated by X-ray diffraction and SEM. Thus, after initial cement dissolution, precipitation of more stable phosphate calcium phases implied an increase of the mechanical properties during aging. This method seems to be a promising tool for monitoring biomedical explants properties and, more generally, high porous ceramics.
6

Étude de la plasticité du monocristal de phase MAX par déformation aux petites échelles / Study of the single crystal plasticity of MAX phase by deformation at small scales

Sylvain, Wilgens 06 December 2016 (has links)
L'objectif de cette thèse est l'étude de la déformation, à l'échelle microscopique, de la phase MAX Ti2AlN, synthétisée par métallurgie des poudres. Ce travail se divise en trois parties : une première dans laquelle l'accent a été mis sur l'hystérèse mécanique des phases MAX via des essais cyclés, en nanoindentation sphérique et compression ex-situ de micro-piliers, sur des grains d'orientations différentes déterminées par l'EBSD. Dans la deuxième nous nous sommes intéressés à la déformation de micropiliers via des essais de compression cyclés in-situ couplés à la micro-diffraction Laue. L'objectif a été d'analyser les taches diffraction au cours de la déformation du pilier afin de mettre en évidence les mécanismes de déformation élémentaires mis en jeu et d'observer les structures finales via des images MEB post-mortem des piliers. Enfin, une dernière dans laquelle l'objectif a été l'étude des mécanismes de déformation en température à l'échelle microscopique via des essais de nano-indentation allant jusqu'à 800°C. La caractérisation des lignes de glissement en surface et des configurations microstructurales sous l'empreinte a été réalisée par AFM et MET respectivement. Toutes les données recueillies par ces divers essais aux petites échelles, ont permis d'affiner notre compréhension des mécanismes de déformation du monocristal de phase MAX, notamment vis à vis des modèles usuellement proposés dans la littérature. / The thesis's goal is to study the deformation, at microscopic scale, of the MAX phase Ti2AlN synthesized by powder metallurgy. This work is divided into three parts: in the first part, the interest has been put on the hysteretic behavior of the MAX phases via cyclic mechanical solicitations, during spherical indentation tests and ex-situ compression of micro-pillars, on differently orientated grains beforehand determined by EBSD. In the second part, we were interested into the micro-pillar's deformation via insitu cyclic compression tests coupled with Laue micro-diffraction. The goal was to analyse the evolution diffraction lines during the pillar's deformation in order to highlight the elementary deformation mechanisms and to observe the finale structures via the post-mortem SEM imaging of the pillars. Finally, a last part was devoted to study the deformation mechanisms in temperature at microscopic scale via nano-indentation tests up to 800°C. The characterization of the slip lines on the surface has been revealed by AFM and that of t he microstructural configurations (dislocations) under the indent has been done by TEM. All data collected by these various tests at the small scales have refined our understanding of the deformation mechanisms of crystal MAX phase, particularly with respect to the models usually proposed in the literature.
7

Étude du comportement mécanique à rupture des alumines de forte porosité : Application aux supports de catalyseurs d'hydrotraitement des résidus / Mechanical behaviour at fracture of highly porous aluminas : Application to catalyst supports for residues hydrotreating

Staub, Déborah 29 September 2014 (has links)
La présente étude porte sur le comportement mécanique de deux types de supports de catalyseurs utilisés industriellement en hydrotraitement des résidus. Ces supports extrudés, fabriqués par IFPEN, sont constitués d’alumine de transition γ avec un taux de porosité proche de 70%. La porosité du premier matériau est uniquement constituée de mésopores (< 50 nm). La porosité du second matériau est constituée de mésopores et de macropores (jusqu’à 20 µm). Les niveaux de sollicitation en service étant très peu connus, cette étude s’attache à décrire de manière précise et exhaustive le comportement mécanique de ces supports sous une large gamme de sollicitations, et à identifier les différents mécanismes de ruine possibles. L’objectif final est de mieux comprendre les relations entre les paramètres microstructuraux et les propriétés mécaniques afin d’identifier des leviers d’amélioration de la tenue mécanique des supports. Dans un premier temps, une méthodologie adaptée de caractérisation mécanique est établie. Le comportement des supports est étudié d’une part en traction, à l’aide d’essais de flexion trois points et d’écrasement diamétral, et d’autre part, en compression sous différents taux de triaxialité, à l’aide d’essais de compression uniaxiale et hydrostatique et d’essais de micro-indentation sphérique. Les différents mécanismes responsables de la ruine des supports sont identifiés au moyen de techniques d’imagerie telles que la microscopie électronique à balayage et la micro-tomographie à rayons X. En traction, le comportement est fragile avec l’amorçage de la rupture sur un défaut critique. En compression, une transition fragile / quasi-plastique du comportement est observée avec l’augmentation du taux de confinement. Cette quasi-plasticité s’exprime en particulier à travers un phénomène de densification de la macroporosité. Dans un deuxième temps, un critère de rupture est identifié pour chaque type de matériau en vue de représenter sur une même surface de charge les différents types de comportement et phénomènes physiques observés. Cette identification est réalisée en couplant les essais d’indentation sphérique à une analyse numérique. Des critères faisant intervenir la pression hydrostatique permettent de rendre compte de la forte dissymétrie du comportement des matériaux en traction et en compression. Enfin, dans un souci de se rapprocher des sollicitations subies par les supports de catalyseurs dans un réacteur en service, le comportement d’un empilement de supports est étudié en compression œdométrique. L’analyse de cet essai par tomographie à rayons X permet de déterminer les différents mécanismes de ruine intervenant au sein d’un empilement, en particulier ceux responsables de la génération de fines. Les résultats illustrent la pertinence de la caractérisation en flexion et en indentation des supports de catalyseurs seuls pour prévoir leur comportement au sein d’un empilement en compression. / In this work, we study the mechanical behaviour of two types of catalysts supports produced by IFPEN and industrially used in residues hydrotreating. Those extruded supports are made of transition γ-alumina with about 70% of porous volume. The first material’s porosity is exclusively composed of mesopores (< 50 nm). The porosity of the second material is composed of both mesopores and macropores (up to 20 µm). Because of the limited knowledge of the stress fields in embedded catalysts supports in use in a reactor, this study aims at precisely and exhaustively describing the mechanical behaviour of those supports under a wide range of stresses, and identifying the possible damage mechanisms. The final objective is to better understand the influence of microstructural parameters on the mechanical properties of the supports in order to propose some leads about how to improve their mechanical strength. First, an adequate mechanical characterization methodology is set. On one hand, the tensile mechanical behaviour of the supports is studied with three-point bending and diametrical crushing tests. On the other hand, their compressive behaviour under various triaxiality rates is characterized in uniaxial and hydrostatic compression, and by spherical micro-indentation. The different damaging mechanisms are identified by imaging techniques such as scanning electronic microscopy and X-ray micro-tomography. Under tensile stresses, the supports exhibit a brittle behaviour and fracture initiates at a critical flaw. Under compressive stresses, a brittle/quasi-plastic transition is observed with increasing the triaxiality rate. The quasi-plasticity is mainly due to the densification of the macroporosity. The second part of the study consists in identifying, for each material, a fracture criterion able to represent every types of behaviour and physical phenomena observed on the same yield surface. This identification is achieved by coupling the spherical indentation tests to a numerical analysis. Fracture criteria involving hydrostatic pressure are well suited to describe the highly dissymmetric mechanical behaviour of the materials in tension and in compression. The last part of this work aims at studying the mechanical behaviour of a stack of supports under œdometric compression in order to produce stress fields more representative of those existing within the supports stacked in a reactor. This test is analysed by X-ray tomography, which allows us to determine/acknowledge the different damaging mechanisms involved in fragments and fines generation. The results illustrate the suitability of the bending and indentation tests to characterize the mechanical properties of a single support and relate them to its mechanical behaviour in a stack of supports under compression.

Page generated in 0.121 seconds