Wir betrachten Optimalsteuerungsprobleme, die von partiellen Differentialgleichungen beziehungsweise Variationsungleichungen mit Differentialoperatoren erster Ordnung abhängen. Wir führen die Reformulierung eines Tagebauplanungsproblems, das auf stetigen Funktionen beruht, ein. Das Resultat ist ein Optimalsteuerungsproblem für Viskositätslösungen einer Eikonalgleichung. Die Existenz von Lösungen dieses und bestimmter Hilfsprobleme, die von semilinearen PDG‘s mit künstlicher Viskosität abhängen, wird bewiesen, Stationaritätsbedingungen hergeleitet und ein schwaches Konsistenzresultat für stationäre Punkte präsentiert. Des Weiteren betrachten wir Optimalsteuerungsprobleme, die von stationären Variationsungleichungen erster Art mit linearen Differentialoperatoren erster Ordnung abhängen. Wir diskutieren Lösbarkeit und Stationaritätskonzepte für diese Probleme. Für letzteres vergleichen wir Ergebnisse, die entweder durch die Anwendung von Penalisierungs- und Regularisierungsansätzen direkt auf Ebene von Differentialoperatoren erster Ordnung oder als Grenzwertprozess von Stationaritätssystemen für viskositätsregularisierte Optimalsteuerungsprobleme unter passenden Annahmen erhalten werden. Um die Konsistenz von ursprünglichem und regularisierten Problemen zu sichern, wird ein bekanntes Ergebnis für Lösungen von VU’s mit degeneriertem Differentialoperator erweitert. In beiden Fällen ist die erhaltene Stationarität schwächer als W-stationarität. Die theoretischen Ergebnisse werden anhand numerischer Beispiele verifiziert. Wir erweitern diese Ergebnisse auf Optimalsteuerungsprobleme bezüglich zeitabhängiger VU’s mit Differentialoperatoren erster Ordnung. Hierfür wird die Existenz von Lösungen bewiesen und erneut ein Stationaritätssystem mit Hilfe verschwindender Viskositäten unter bestimmten Beschränktheitsannahmen hergeleitet. Die erhaltenen Ergebnisse werden anhand von numerischen Beispielen verifiziert. / We consider problems of optimal control subject to partial differential equations and variational inequality problems with first order differential operators. We introduce a reformulation of an open pit mine planning problem that is based on continuous functions. The resulting formulation is a problem of optimal control subject to viscosity solutions of a partial differential equation of Eikonal Type. The existence of solutions to this problem and auxiliary problems of optimal control subject to regularized, semilinear PDE’s with artificial viscosity is proven. For the latter a first order optimality condition is established and a mild consistency result for the stationary points is proven. Further we study certain problems of optimal control subject to time-independent variational inequalities of the first kind with linear first order differential operators. We discuss solvability and stationarity concepts for such problems. In the latter case, we compare the results obtained by either utilizing penalization-regularization strategies directly on the first order level or considering the limit of systems for viscosity-regularized problems under suitable assumptions. To guarantee the consistency of the original and viscosity-regularized problems of optimal control, we extend known results for solutions to variational inequalities with degenerated differential operators. In both cases, the resulting stationarity concepts are weaker than W-stationarity. We validate the theoretical findings by numerical experiments for several examples. Finally, we extend the results from the time-independent to the case of problems of optimal control subject to VI’s with linear first order differential operators that are time-dependent. After establishing the existence of solutions to the problem of optimal control, a stationarity system is derived by a vanishing viscosity approach under certain boundedness assumptions and the theoretical findings are validated by numerical experiments.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/18285 |
Date | 16 November 2016 |
Creators | Strogies, Nikolai |
Contributors | Griewank, Andreas, Alvarez, Felipe, Rautenberg, Carlos |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0032 seconds