Return to search

On the spectrum of Schrödinger operators under Riemannian coverings

In dieser Dissertation untersuchen wir das Verhalten von Schrödinger-Operatoren unter Riemannschen Überlagerungen. Wir betrachten folgende Situation: Sei eine Riemannsche Überlagerung und ein Schrödinger-Operator S mit glattem, von unten beschränktem Potential auf der Basismannigfaltigkeit gegeben. Sei S‘ der Lift von S auf die Überlagerungsmannigfaltigkeit. Man sieht leicht, dass das Minimum des Spektrums von S nicht größer als das Minimum des Spektrums von S‘ ist. R. Brooks hat als erster untersucht, wann die Gleichheit gilt. Er bewies insbesondere, dass eine normale Riemannsche Überlagerung einer geschlossenen Mannigfaltigkeit genau dann amenabel ist, wenn sie das Minimum des Spektrums des Laplace-Operators unverändert lässt.
Zusammen mit W. Ballmann und H. Matthiesen bewiesen wir, dass amenable Riemannsche Überlagerungen immer das Minimum des Spektrums von Schrödinger-Operatoren erhalten; dies verallgemeinert Resultate von R. Brooks sowie von P. Bérard und Ph. Castillon. In dieser Dissertation beweisen wir, dass im Fall vollständiger Mannigfaltigkeiten das Spektrum von S im Spektrum von S‘ enthalten ist. Tatsächlich beweisen wir diese Beziehung sogar für eine deutlich größere Klasse von Differentialoperatoren.
Obwohl Amenabilität eine natürliche Bedingung für die Gleichheit der Minima der Spektren ist, ist es unklar, inwieweit diese Bedingung optimal ist. In dieser Dissertation beweisen wir: Wenn eine Riemannsche Überlagerung das Minimum des Spektrums eines Schrödinger-Operators erhält, und wenn dieses zum diskreten Spektrum des Operators auf der Basismannigfaltigkeit gehört, dann ist die Überlagerung amenabel. Man beachte, dass wir keinerlei geometrische oder topologische Bedingungen an die Mannigfaltigkeiten stellen. Dies verallgemeinert sowohl frühere Resultate von R. Brooks, T. Roblin und S. Tapie als auch ein kürzliches Resultat aus einer gemeinsamen Arbeit mit W. Ballmann und H. Matthiesen. / In this thesis, we investigate the behavior of the spectrum of Schrödinger operators under Riemannian coverings. To set the stage, consider a Riemannian covering and a Schrödinger operator S on the base manifold, with smooth potential bounded from below potential. Let S’ be the lift of S on the covering space. It is easy to see that the bottom (that is, the minimum) of the spectrum of S is no greater than the bottom of the spectrum of S’. R. Brooks was the first one to examine when the equality holds. In particular, he proved that a normal Riemannian covering of a closed manifold is amenable if and only if it preserves the bottom of the spectrum of the Laplacian.
Generalizing former results of R. Brooks, and P. Berard and Ph. Castillon, in a joint work with W. Ballmann and H. Matthiesen, we proved that amenable Riemannian coverings preserve the bottom of the spectrum of Schrödinger operators. In this thesis, we prove that if, in addition, the manifolds are complete, then the spectrum of S is contained in the spectrum of S’. As a matter of fact, we establish this result for a quite wide class of differential operators.
Although amenability is a natural assumption for the preservation of the bottom of the spectrum, it is not clear to what extent it is optimal. In this thesis, we prove that if a Riemannian covering preserves the bottom of the spectrum of a Schrödinger operator, which belongs to the discrete spectrum of the operator on the base manifold, then the covering is amenable. It is worth to point out that we do not impose any geometric or topological assumptions on the manifolds. This generalizes former results by R. Brooks, T. Roblin and S. Tapie, and a recent result of a joint work with W. Ballmann and H. Matthiesen.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20252
Date19 October 2018
CreatorsPolymerakis, Panagiotis
ContributorsSchüth, Dorothee, Ballmann, Werner, Post, Olaf
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0028 seconds