• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantengraphen mit zufälligem Potential / Quantum Graphs with a random potential

Schubert, Carsten 11 April 2012 (has links) (PDF)
Ein metrischer Graph mit einem selbstadjungierten, negativen Laplace-Operator wird Quantengraph genannt. In dieser Arbeit werden Transporteigenschaften zufälliger Laplace-Operatoren betrachtet. Dazu wird die Multiskalenanalyse (MSA) von euklidischen Räumen auf metrische Graphen angepasst. Eine Überdeckung der metrischen Graphen wird aus gleichmäßig polynomiellem Wachstum und der gleichmäßigen Beschränkung der Kantenlängen gewonnen. Als Hilfsmittel für die MSA werden eine Combes-Thomas-Abschätzung und eine Geometrische Resolventenungleichung bewiesen. Zusammen mit einer Wegner-Abschätzung und der Existenz von verallgemeinerten Eigenfunktionen wird mittels der modifizierten MSA spektrale Lokalisierung (d.h. reines Punktspektrum) mit polynomiell fallenden Eigenfunktionen am unteren Rand des Spektrums für negative Laplace-Operatoren mit zufälligem Potential geschlossen. Dabei sind alle Randbedingungen, die eine nach unten beschränkten Operator liefern, wählbar. / We prove spectral localization for infinite metric graphs with a self-adjoint Laplace operator and a random potential. Therefor we adapt the multiscale analysis (MSA) from the euclidean case to metric graphs. In the MSA a covering of the graph is needed which is obtained from a uniform polynomial growth of the graph. The geometric restrictions of the graph contain a uniform bound on the edge lengths. As boundary conditions we allow all settings which give a lower bounded self-adjoint operator with an associated quadratic form. The result is spectral localization (i.e. pure point spectrum) with polynomially decaying eigenfunctions in a small interval at the ground state energy.
2

Quantengraphen mit zufälligem Potential

Schubert, Carsten 13 December 2011 (has links)
Ein metrischer Graph mit einem selbstadjungierten, negativen Laplace-Operator wird Quantengraph genannt. In dieser Arbeit werden Transporteigenschaften zufälliger Laplace-Operatoren betrachtet. Dazu wird die Multiskalenanalyse (MSA) von euklidischen Räumen auf metrische Graphen angepasst. Eine Überdeckung der metrischen Graphen wird aus gleichmäßig polynomiellem Wachstum und der gleichmäßigen Beschränkung der Kantenlängen gewonnen. Als Hilfsmittel für die MSA werden eine Combes-Thomas-Abschätzung und eine Geometrische Resolventenungleichung bewiesen. Zusammen mit einer Wegner-Abschätzung und der Existenz von verallgemeinerten Eigenfunktionen wird mittels der modifizierten MSA spektrale Lokalisierung (d.h. reines Punktspektrum) mit polynomiell fallenden Eigenfunktionen am unteren Rand des Spektrums für negative Laplace-Operatoren mit zufälligem Potential geschlossen. Dabei sind alle Randbedingungen, die eine nach unten beschränkten Operator liefern, wählbar. / We prove spectral localization for infinite metric graphs with a self-adjoint Laplace operator and a random potential. Therefor we adapt the multiscale analysis (MSA) from the euclidean case to metric graphs. In the MSA a covering of the graph is needed which is obtained from a uniform polynomial growth of the graph. The geometric restrictions of the graph contain a uniform bound on the edge lengths. As boundary conditions we allow all settings which give a lower bounded self-adjoint operator with an associated quadratic form. The result is spectral localization (i.e. pure point spectrum) with polynomially decaying eigenfunctions in a small interval at the ground state energy.
3

On the spectrum of Schrödinger operators under Riemannian coverings

Polymerakis, Panagiotis 19 October 2018 (has links)
In dieser Dissertation untersuchen wir das Verhalten von Schrödinger-Operatoren unter Riemannschen Überlagerungen. Wir betrachten folgende Situation: Sei eine Riemannsche Überlagerung und ein Schrödinger-Operator S mit glattem, von unten beschränktem Potential auf der Basismannigfaltigkeit gegeben. Sei S‘ der Lift von S auf die Überlagerungsmannigfaltigkeit. Man sieht leicht, dass das Minimum des Spektrums von S nicht größer als das Minimum des Spektrums von S‘ ist. R. Brooks hat als erster untersucht, wann die Gleichheit gilt. Er bewies insbesondere, dass eine normale Riemannsche Überlagerung einer geschlossenen Mannigfaltigkeit genau dann amenabel ist, wenn sie das Minimum des Spektrums des Laplace-Operators unverändert lässt. Zusammen mit W. Ballmann und H. Matthiesen bewiesen wir, dass amenable Riemannsche Überlagerungen immer das Minimum des Spektrums von Schrödinger-Operatoren erhalten; dies verallgemeinert Resultate von R. Brooks sowie von P. Bérard und Ph. Castillon. In dieser Dissertation beweisen wir, dass im Fall vollständiger Mannigfaltigkeiten das Spektrum von S im Spektrum von S‘ enthalten ist. Tatsächlich beweisen wir diese Beziehung sogar für eine deutlich größere Klasse von Differentialoperatoren. Obwohl Amenabilität eine natürliche Bedingung für die Gleichheit der Minima der Spektren ist, ist es unklar, inwieweit diese Bedingung optimal ist. In dieser Dissertation beweisen wir: Wenn eine Riemannsche Überlagerung das Minimum des Spektrums eines Schrödinger-Operators erhält, und wenn dieses zum diskreten Spektrum des Operators auf der Basismannigfaltigkeit gehört, dann ist die Überlagerung amenabel. Man beachte, dass wir keinerlei geometrische oder topologische Bedingungen an die Mannigfaltigkeiten stellen. Dies verallgemeinert sowohl frühere Resultate von R. Brooks, T. Roblin und S. Tapie als auch ein kürzliches Resultat aus einer gemeinsamen Arbeit mit W. Ballmann und H. Matthiesen. / In this thesis, we investigate the behavior of the spectrum of Schrödinger operators under Riemannian coverings. To set the stage, consider a Riemannian covering and a Schrödinger operator S on the base manifold, with smooth potential bounded from below potential. Let S’ be the lift of S on the covering space. It is easy to see that the bottom (that is, the minimum) of the spectrum of S is no greater than the bottom of the spectrum of S’. R. Brooks was the first one to examine when the equality holds. In particular, he proved that a normal Riemannian covering of a closed manifold is amenable if and only if it preserves the bottom of the spectrum of the Laplacian. Generalizing former results of R. Brooks, and P. Berard and Ph. Castillon, in a joint work with W. Ballmann and H. Matthiesen, we proved that amenable Riemannian coverings preserve the bottom of the spectrum of Schrödinger operators. In this thesis, we prove that if, in addition, the manifolds are complete, then the spectrum of S is contained in the spectrum of S’. As a matter of fact, we establish this result for a quite wide class of differential operators. Although amenability is a natural assumption for the preservation of the bottom of the spectrum, it is not clear to what extent it is optimal. In this thesis, we prove that if a Riemannian covering preserves the bottom of the spectrum of a Schrödinger operator, which belongs to the discrete spectrum of the operator on the base manifold, then the covering is amenable. It is worth to point out that we do not impose any geometric or topological assumptions on the manifolds. This generalizes former results by R. Brooks, T. Roblin and S. Tapie, and a recent result of a joint work with W. Ballmann and H. Matthiesen.
4

Spectral estimates for the magnetic Schrödinger operator and the Heisenberg Laplacian

Hansson, Anders January 2007 (has links)
I denna avhandling, som omfattar fyra forskningsartiklar, betraktas två operatorer inom den matematiska fysiken. De båda tidigare artiklarna innehåller resultat för Schrödingeroperatorn med Aharonov-Bohm-magnetfält. I artikel I beräknas spektrum och egenfunktioner till denna operator i R2 explicit i ett antal fall då en radialsymmetrisk skalärvärd potential eller ett konstant magnetfält läggs till. I flera av de studerade fallen kan den skarpa konstanten i Lieb-Thirrings olikhet beräknas för γ = 0 och γ ≥ 1. I artikel II bevisas semiklassiska uppskattningar för moment av egenvärdena i begränsade tvådimensionella områden. Vidare presenteras ett exempel då den generaliserade diamagnetiska olikheten, framlagd som en förmodan av Erdős, Loss och Vougalter, är falsk. Numeriska studier kompletterar dessa resultat. De båda senare artiklarna innehåller ett flertal spektrumuppskattningar för Heisenberg-Laplace-operatorn. I artikel III bevisas skarpa olikheter för spektret till Dirichletproblemet i (2n + 1)-dimensionella områden med ändligt mått. Låt λk och μk beteckna egenvärdena till Dirichlet- respektive Neumannproblemet i ett område med ändligt mått. N. D. Filonov har bevisat olikheten μk+1 < λk för den euklidiska Laplaceoperatorn. I artikel IV visas detta resultat för Heisenberg-Laplaceoperatorn i tredimensionella områden som uppfyller vissa geometriska villkor. / In this thesis, which comprises four research papers, two operators in mathe- matical physics are considered. The former two papers contain results for the Schrödinger operator with an Aharonov-Bohm magnetic field. In Paper I we explicitly compute the spectrum and eigenfunctions of this operator in R2 in a number of cases where a radial scalar potential and/or a constant magnetic field are superimposed. In some of the studied cases we calculate the sharp constants in the Lieb-Thirring inequality for γ = 0 and γ ≥ 1. In Paper II we prove semi-classical estimates on moments of the eigenvalues in bounded two-dimensional domains. We moreover present an example where the generalised diamagnetic inequality, conjectured by Erdős, Loss and Vougalter, fails. Numerical studies complement these results. The latter two papers contain several spectral estimates for the Heisenberg Laplacian. In Paper III we obtain sharp inequalities for the spectrum of the Dirichlet problem in (2n + 1)-dimensional domains of finite measure. Let λk and μk denote the eigenvalues of the Dirichlet and Neumann problems, respectively, in a domain of finite measure. N. D. Filonov has proved that the inequality μk+1 < λk holds for the Euclidean Laplacian. In Paper IV we extend his result to the Heisenberg Laplacian in three-dimensional domains which fulfil certain geometric conditions. / QC 20100712

Page generated in 0.0888 seconds