Return to search

Rötning av matavfall – en studie av metanutbytet hos matavfall förbehandlat med skruvkrossteknik samt vid samrötning med bioslam från pappersbruk / Anaerobic digestion – methaneyields in organic municipal solid waste pre-treated with screw cross andco-digest with paper mill sludge

Today's society is facing major challenges. In order to reduce the climate impact fossil fuels should be replaced with fuels that do not contribute to the greenhouse effect. The growing population generates organic waste originating from industry and households so called organic fraction of municipal solid waste (OFMSW). Through anaerobic digestion, waste can be utilized to produce energy-rich methane gas. In this way, waste can be a resource instead of a burden on society. The purpose of this project is to investigate the methane yield of source-sorted organic fraction of municipal solid waste (SS-OFMSW) pretreated with screw crush technology and methane yield at the co-digestion of food waste and biosludge from paper mills. SS-OFMSW which is either pre-treated in a screw crusher or a Food Waste Mill and a mixture of SS-OFMSW and biosludge from paper mills digested in a semi - continuous wet process under mesophilic conditions with a retention time of 20 days. Screw crush technique gave a slurry with a methane yield of about 440-490 mL / g VS, which was slightly higher than the yield of 300-350 mL / g VS from the slurry pretreated with Food Waste Mill. The methane concentration was slightly higher for slurry pretreated with Food Waste Mill, 74% in average compared with 68% for slurry pretreated with screw crush. Biosludge from paper mills is an organic waste that can be digested in order to produce biogas. The sludge is poor in nutrients and methane yield at individual anaerobic digestion of paper mill sludge is relatively low. In this study, biosludge was co-digested with SS-OFMSW. The mixture with the proportions 1:1 by g VS gave a methane yield of about 420-480 mL / g VS which is higher than the constituent substrates digested separately. Co-digestion gave a methane concentration at 80% which is also higher than at the individual anaerobic digestion of substrates.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-32816
Date January 2014
CreatorsJakobsson Åhs, Ann-Charlotte
PublisherKarlstads universitet, Institutionen för ingenjörs- och kemivetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds