• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 16
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Termokemisk förbehandling av slam från pappers- och massabruk för ökad metangasproduktion vid rötning / Thermochemical pre-treatment of forest industry sludge to increase the methane production in the digestion process

Karlsson, Lina January 2016 (has links)
Sammanfattning Totalt 80 % av världens energianvändning kommer från förbränning av fossila bränslen. Användningen tros också öka med tiden vilket skulle påverka den förstärkta växthuseffekten ytterligare. De ökade utsläppen av växthusgaser påverkar klimatförändringarna och är någonting som alla borde bidra till att minska. I Sverige är det mindre än 30 % av den totala energianvändningen som kommer från fossila bränslen. Det är dock inte tillräckligt för en hållbar utveckling.   Tillverkningen av papper och massa förbrukar stora mängder vatten som senare måste renas för att kunna släppas ut. Vid reningen bildas slam som ofta förbränns. Istället för att förbränna slammet går det att ta till vara på energin genom att röta slammet och få ut biogas. Dock är det svårt att få detta ekonomiskt hållbart. Studier visar att med hjälp av förbehandling av bioslammet kan större mängder biogas produceras och därmed göra processen mer lönsam. Biogasen som bildas genom rötning kan sedan ersätta en viss del av de fossila bränslen som används i olika processteg i bruken och därmed föra pappers- och massaindustrin ett steg närmare ett hållbart koncept.   Förbehandlingar som visats gynna biogasproduktionen är kombination av kemisk och termisk behandling som sönderdelar slammet innan rötningen. Då kan biogasproduktionen öka och mer fossila bränslen kan fasas ut.   I studien behandlas bioslam kemiskt och termiskt innan rötning. De kemikalier som undersöktes var natriumhydroxid (NaOH), kaliumhydroxid (KOH) och kalciumhydroxid Ca(OH)2 som användes för att ge slammet pH 10 eller 12. De termiska förbehandlingarna utfördes i 100 °C respektive 140 °C. Som referenspunkter användes obehandlat slam och endast värmebehandlat slam. Bioslammet som användes hämtades på Stora Ensos bruk i Skoghall och det kommunala rötslammet från Fiskaretorpets reningsverk i Kristinehamn då de använder mesofil rötning.   Rötningen har skett satsvis med hjälp av en AMPTS2 (ett analytiskt instrument för rötningsprocesser) i tre rötningsomgångar. Den förbehandling som gav allra mest metangas var NaOH pH 12 i 100 °C. Detta skedde i rötningsomgång två. I de andra rötningsomgångarna var det förbehandlingen med NaOH pH 12 i 140 °C respektive KOH pH 12 i 140 °C som genererade mest metangas. Vid jämförelse av de olika rötningsomgångarna användes rötning av cellulosa för respektive omgång som referens. Skillnaderna mellan de tre som producerade mest metangas var små. Förbehandling med pH 12 gav mer metangas än med pH 10. Förbehandlingar med NaOH producerade mer metangas vid 100°C än vid 140 °C, medan det motsatta gällde för förbehandlingarna med Ca(OH)2. / Abstract A total of 80 % of the world’s energy use comes from fossil fuels, which causes emissions of greenhouse gases leading to climate change. In Sweden less than 30 % of the total energy use comes from fossil fuels. It must however, be decreased further to achieve a sustainable development.   A large amount of water is used during the manufacturing of pulp and paper. The water has to be treated before reaching a recipient and during this purification process, sludge is left as a by-product. The sludge is usually incinerated, although it could also be used in an anaerobic digestion process to produce biogas. The method is difficult to make economically viable, but studies show that by pre-treatment of the sludge, larger amounts of biogas can be produced, which would make the process more profitable. Biogas produced by anaerobic digestion can replace fossil fuels in some processes at pulp and paper mills and therefore contribute to a smaller environmental footprint for this industry.   Pre-treatments shown to promote the production of biogas are a combination of chemical and thermal treatment, which decomposes the sludge before digestion. The biogas production will then increase and more fossil fuels can be phased out.   In this report, biosludge is treated chemically and thermally before digestion. The chemicals tested were sodium hydroxide, potassium hydroxide and calcium hydroxide, added until the sludge had a pH of 10 or 12. The thermal treatments tested were 100 °C and 140 °C. As references, untreated sludge and only heat treated sludge were used. The biosludge that was used was collected at Stora Enso CTMP-mill in Skoghall and the inoculum were collected from a municipal treatment plant.    Digestion was done in batch with the help of an AMPTS2 in three digestion rounds. The pre-treatment that produced the most methane was 100 °C with NaOH at pH 12. This was in anaerobic digestion round two. In the other digestion rounds the best pre-treatments were NaOH pH 12 at 140 °C and KOH pH 12 at 140 °C. When comparing the different rounds, a cellulose sample was used for each round as a reference. All chemical pre-treatments generated more methane at pH 12 than at pH 10. Pre-treatments with NaOH produced more methane gas at 100°C than at 140 °C, whereas the opposite was true for Ca(OH)2.
2

Kartläggning av tekniska och processrelaterade problem och dess utvecklingsmöjligheter vid biogasanläggningar / Identification of technical and process related problems and potential for developments at biogas plants

Björkmalm, Johanna January 2013 (has links)
Biogasanläggningar, som behandlar fler än en typ av substrat, så kallade samrötningsanläggningar, är relativt unga anläggningar. De första byggdes under tidigt 90-tal och står idag för omkring 28% av Sveriges totala biogasproduktion. Felaktigt inkommande material och det matavfall som tas in som substrat ställer höga krav på anläggningarnas utrustning, med därtill kopplade problem. Syftet med detta examensarbete var att genom intervjuer genomföra en kartläggning av befintliga tekniska och processrelaterade problem för två biogasanläggningar med samrötning samt en förbehandlingsanläggning. För att undersöka alternativa tekniker och utrustningar till identifierade problem genomfördes litteraturstudier och kontakt togs med leverantörer av biogasutrustning. Slutligen genomfördes en kostnadskalkylering för en specifik anläggning för att få en uppfattning om vad ett byte av problematisk utrustning skulle innebära rent ekonomiskt. Resultatet av kartläggningen visade att anläggningarnas förbehandling stod för de flesta problemen. Ett gemensamt problem för samtliga anläggningar var svårigheten att separera oönskat material från matavfall. Plast och annat oönskat material avskiljs inte i tillfredställande grad utan följer med vidare i processen och orsakar driftproblem samt att allt för mycket rötbart material följer med utgående rejekt och går till förbränning istället för rötning. Provtagning och analys av substrat och rejekt visade att vid avskiljning med skruvpress återfanns mer än 40% av substratets potentiella teoretiska metanutbyte i rejektfraktionen. Separation med bioseparator samt separation med en kombination av separerings­bassäng, trappstegsgaller och silpress visade en mindre förlust av metan i det avskiljda rejektet. Övriga identifierade problem omfattas av slitage och låg servicevänlighet hos utrustningen och outnyttjad utrustningskapacitet samt problem på grund av att utrustning ursprungligen ej var avsedd för biogasanläggningar. Litteraturstudier och kontakter med leverantörer av biogasutrustning visade att det finns alternativa tekniker och utrustningar till de identifierade problemen. Uppvärmning av substrat innan separation samt skifte till papperspåsar som insamlingsmetod är två potentiella lösningar. Det finns ett flertal utrustningar på marknaden för avskiljning av oönskat material, som potentiellt skulle kunna ersätta ineffektiva separationsutrustningar vid de aktuella anläggningarna. Huruvida sådana utrustningar skulle ge en förbättrad avskiljning och därmed minskad förlust av rötbart material i rejekt är svårt att avgöra innan tester med aktuellt substrat under aktuella förutsättningar genomförts. Resultatet av kostnadskalkyleringen visade att de största årliga drift- och underhålls­kostnaderna för befintlig separationsutrustning var lön till personal samt kostnader för slitage och haverier. En nyinvestering visade sig vara mycket kapitalintensivt i form av den initiala investeringskostnaden. Däremot frigör ett eventuellt byte till ny separationsutrustning personaltimmar då ny utrustning potentiellt kan kräva mindre drift- och underhållstid. Frigjorda personaltimmar kan istället användas till förebyggande underhåll eller som en besparingsåtgärd. Bättre uppföljning av rejektmängder och oplanerade driftstopp vid anläggningarna är viktiga initiala steg för att få kunskap om vilka problem som är av störst betydelse för att därefter kunna förbättra processen. Befintliga separationstekniker på anläggningarna fungerar inte optimalt och en vidareutveckling alternativt ersättning av dessa bör undersökas ytterligare. / Biogas plants treating more than one type of substrate, so called co-digestion plants, are relatively new facilities. Mainly they were established in the early nineties and in Sweden these digesters produce approximately 28% of the total amount of biogas produced today. Faultily incoming material and the food waste used as substrate at the plants set high demands on the equipment used at the plants and many problems occur. The purpose of this thesis was to identify technical and process related problems at two co-digestion plants and one pretreatment plant by performing interviews with staff at the plants. Investigation of alternative techniques and equipment to abate the identified problems were performed by a literature study and contacts with distributors of biogas plant equipment. Finally, a cost-estimation was made at a specific plant in order to investigate the economic aspects of a replacement of old equipment. The result of the problem identification showed that the pretreatment units of the plants caused most of the problems. A common issue at the three plants was the problem to separate unwanted material from the food waste. Plastics and other unwanted material aren’t separated to a full extent and thereby cause problems downstream. Furthermore a large amount of food waste aimed for digestion, are separated together with the reject fraction and goes to incineration instead. Analysis of the incoming substrate and reject showed that by separation with a screw press more than 40% of the substrates theoretical methane yield were lost in the reject fraction. However, separation with a bio-separator or with a combination of sedimentation/flotation, a grid and a strain press showed a smaller loss of methane in the reject. Additional problems identified included extensive wear and tear at the equipment, unused equipment and problems caused by the fact that the equipment was not originally constructed for biogas plants. The literature study and contact with distributors of biogas plant equipment revealed alternative techniques and equipment to remediate the identified problems. The warm-up of substrate before separation and the replacement of plastic bags for paper bags for the collection of food waste are two potential solutions. There are several different equipments available, in order to separate unwanted material, which could potentially replace the ineffective equipment at the plants. Whether these would result in better separation and reduced loss of food waste via the reject is hard to tell before tests have been made at prevalent substrate and operation conditions. The result of the cost-estimation showed that the largest operating and maintenance costs for the old equipment were the labor cost and the cost for wear and tear. An investment in new equipment is very capital-intensive because of the large purchasing and installation cost.  On the other hand, a new equipment could potentially result in a release in working hours compared to a continuous operation of the old equipment. These extra hours could instead be used to maintain the new equipment and prevent break downs.  A better follow-up at the plants regarding the amount of reject and the number of occasions of unwanted stop is a first step towards gaining knowledge on the major problems in order to be able to improve the process. Current used separation techniques at the plants are not working as expected and an optimization or replacement of these should be evaluated.
3

Utvärdering av skiktvikt och ytfinish efter produktionsstörningar

Karin, Blezell January 2021 (has links)
Mellan November 2020 och januari 2021 utfördes ett examensarbete på Scanias förbehandling i Oskarshamn med fokus på att utvärdera skiktvikt och ytfinish vidproduktionsstörningar. Förbehandlingens funktion är att rostskydda lastbilshytten genom att behandla den med ett lager fosfat kristaller vilket ger ytan en matt mörkgrå finish. Temperatur och pH identifierades som de faktorer med störst påverkan på skiktvikt och ytfinish och dessa faktorer analyserades i olika förhållanden genom att doppa galvaniserade paneler i justerad badlösning från kamrarna i förbehandlingen. Analyser med fokus påskillnader i temperatur visade att en sänkning av temperaturen i G02 eller G03 inte signifikant påverkade skiktvikten. Däremot påvisade analys av temperaturens påverkan vikten av att hålla temperaturen i G06 runt om börvärdes området för att ge resultat liknande referens panelerna. Test panelerna för 005, kall G06, har liknande färg som referens panelerna men HDG panelen har en mycket mattare ytfinish. HDG panelen har dessutom enskiktvikt på 5,70 g/m² vilket ligger utanför börvärdes området. Test panelerna för 006, varm G06, har på samma sätt som 005 en liknande färg som referens panelerna men här är det istället EG panelen som har en mattare ytfinish men panelen har trots detta inte en avvikande skiktvikt. På grund av den avvikande ytfinishen är det möjligt att det finns en avvikelse i kristallens struktur men utan en SEM analys är det omöjligt att avgöra. Analys av pH gav oväntade resultat då det verkade som att en mer alkalisk miljö gör att panelen inte får ett fosfatskikt utan har samma ytfinish som en obehandlad panel. Däremot får panelerna i den sura miljön ett beige grå ytfinish.
4

Rötning av matavfall – en studie av metanutbytet hos matavfall förbehandlat med skruvkrossteknik samt vid samrötning med bioslam från pappersbruk / Anaerobic digestion – methaneyields in organic municipal solid waste pre-treated with screw cross andco-digest with paper mill sludge

Jakobsson Åhs, Ann-Charlotte January 2014 (has links)
Today's society is facing major challenges. In order to reduce the climate impact fossil fuels should be replaced with fuels that do not contribute to the greenhouse effect. The growing population generates organic waste originating from industry and households so called organic fraction of municipal solid waste (OFMSW). Through anaerobic digestion, waste can be utilized to produce energy-rich methane gas. In this way, waste can be a resource instead of a burden on society. The purpose of this project is to investigate the methane yield of source-sorted organic fraction of municipal solid waste (SS-OFMSW) pretreated with screw crush technology and methane yield at the co-digestion of food waste and biosludge from paper mills. SS-OFMSW which is either pre-treated in a screw crusher or a Food Waste Mill and a mixture of SS-OFMSW and biosludge from paper mills digested in a semi - continuous wet process under mesophilic conditions with a retention time of 20 days. Screw crush technique gave a slurry with a methane yield of about 440-490 mL / g VS, which was slightly higher than the yield of 300-350 mL / g VS from the slurry pretreated with Food Waste Mill. The methane concentration was slightly higher for slurry pretreated with Food Waste Mill, 74% in average compared with 68% for slurry pretreated with screw crush. Biosludge from paper mills is an organic waste that can be digested in order to produce biogas. The sludge is poor in nutrients and methane yield at individual anaerobic digestion of paper mill sludge is relatively low. In this study, biosludge was co-digested with SS-OFMSW. The mixture with the proportions 1:1 by g VS gave a methane yield of about 420-480 mL / g VS which is higher than the constituent substrates digested separately. Co-digestion gave a methane concentration at 80% which is also higher than at the individual anaerobic digestion of substrates.
5

Förbehandling av skogsindustriellt slam för ett ökat metanutbyte vid rötning : En kombination av termisk och kemisk förbehandling / Pretreatment of forest industry sludge to increase the methane yield in the anaerobic digestion process : A combination of thermal and chemical pretreatment

Montelius, Josefine January 2014 (has links)
Vid tillverkning av massa och papper förorenas årligen 505 miljoner kubikmeter vatten som måste renas innan det släpps tillbaka till omgivningen. Vid reningen avskiljs först stora partiklar som sedan avvattnas och förbränns. Vattnet som blir kvar genomgår ytterligare en rening, varvid det bildas bioslam. Bioslammet innehåller mycket intracellulärt vatten, vilket gör det kostsamt och energikrävande att avvattna. Det är även sedan 2005 förbjudet att dumpa organiskt material, varför en mer ekonomiskt attraktiv behandling av slammet är anaerob nedbrytning. I denna nedbrytning omvandlas det organiska materialet till metan och koldioxid där metanet är den eftertraktade gasen. Bioslammet innehåller dock partiklar såsom träfiberrester och mikroorganismer med komplex struktur och är näringsfattigt. Någon form av sönderdelande förbehandling underlättar därför rötningsprocessen. I detta projekt undersöktes termisk förbehandling i kombination med kemisk förbehandling på bioslam från Stora Enso Skoghalls bruk på Hammarö. Själva rötningen skedde i två omgångar varav den första omgången med termisk förbehandling vid 70C och den andra vid 140C. Den kemiska förbehandlingen skedde med tillsats av lut (natriumhydroxid), kalk (kalciumhydroxid) och syra (fosforsyra) vid pH 9 och 11 för baserna och pH 2 och 4 för syran. Även neutrala prov (endast värmebehandling) och ett blankprov (ingen förbehandling) gjordes. Bioslammet ympades med kommunalt slam från Fiskartorpets reningsverk i Kristinehamn som har en mesofil bakteriekultur. Rötningen varade i 19 dagar per omgång i en temperatur på 35C och skedde satsvis i E-kolvar försedda med påsar för gasuppsamling. Totalt rötades 42 prov per omgång som utgjordes av sju mätpunkter á sex replikat för goda statistiska underlag. Resultaten gav en indikation för högst metanproduktion för proven behandlade med kalk vid 140C och för provet utan kemisk förbehandling vid 140C. Lägst produktion hade det kalkbehandlade provet vid pH 9 och 70C följt av blankprovet. Lutproven gav lägre metanproduktion vid 140C än vid 70C och fosforsyran hade så gott som oförändrad produktion mellan temperaturerna. Gemensamt för alla prover som behandlats vid 70C var att de fick en högre procentandel metan då de behandlats vid 140C. De resultat som erhållits är dock osäkra då det i vissa fall var stor spridning mellan provens biogasproduktion inom de enskilda förbehandlingsområdena. / In the pulp and paper process 505 million tons of water are polluted annually, which has to be purified before it is returned to the surrounding lakes. When the water is treated bigger particles are first separated to form sludge, then dewatered and finally incinerated. The excess water is further treated were a type of sludge  bio sludge  is formed. The bio sludge contains high concentration of intracellular water, why it is expensive and energy demanding to dewater. It is also forbidden to dump organic waste since 2005, why a more economically attractive treatment of the water is anaerobic digestion. In the digestion organic compounds is converted into methane and carbon dioxide where the methane is the desired gas. The bio sludge also contains fiber residues and microorganisms with complex structure and is nutrient-poor, which makes it hard to digest. Some kind of disintegrating pretreatment is needed and co-digestion with a more nutrient-rich sludge to facilitate the digestion process. In this project thermal pretreatment in combination with chemical pretreatment was examined on bio sludge from Stora Enso Skoghalls bruk at Hammarö. The anaerobe digestion was done by two rounds whereof the first round thermal pretreated at 70C and the second at 140C. The chemical pretreatment was done by additive of sodium hydroxide, calcium hydroxide and phosphoric acid at pH 9 and 11 for the bases and pH 2 and 4 for the acid. Also neutral samples (no chemical pretreatment) and a reference sample (no pretreatment) were done. The bio sludge were co-digested with municipal sludge from Fiskartorpets reningsverk in Kristinehamn which has a mesophilic bacterial culture. The anaerobic digestion lasted for 19 days per round at a temperature of 35C and were done batch wise in E-flasks provided with a small bag for gas collection. Totally 42 samples were made per round which consisted of seven measurement points and six replicates each for a good statistical basis. The results gave an indication of the highest methane production for the samples treated with calcium hydroxide at 140C and the neutral sample treated at 140C. The sample treated with calcium hydroxide at pH 9 and 70C gave the lowest production of methane followed by the reference sample. The samples treated with sodium hydroxide gave a lower methane production at 140C than at 70C while the acid treated samples had almost the same production at the two different temperatures. All the samples had in common a higher proportion of methane in the biogas when treated at 140C than at 70C. The results should be taken with caution since the distribution amongst the samples within the same pretreatment method sometimes is very high.
6

Screening för exoenzymer från Rhizopus sp, Mucor indicus och Rhizomucor pusillus / Screening for exoenzymes from Rhizopus sp, Mucor indicus, and Rhizomucor pusillus

Claesson, Sofia, Keckman, Rebecca January 2011 (has links)
Syftet med detta examensarbete är att finna exoenzymer från Rhizopus sp, Mucor indicus och Rhizomucor pusillus som kan användas vid förbehandling av organiskt avfall. Syftet är även att finna kolkällor/energikällor som tidigare inte använts inom forskningen i ämnet resursåtervinning vid Högskolan i Borås.För att kunna undersöka vilka kolkällor mikroorganismerna bryter ner odlas dessa upp på agarplattor innehållande minimal-medium samt en specifik kolkälla. Efter fyra dagars inkubering i 30oC studerar man agarplattorna för att se om mikroorganismerna vuxit eller inte. Kan man urskilja tillväxt har de lyckats bryta ner kolkällan samt producera motsvarande exoenzym. Då vissa resultat är oklara odlas mikroorganismerna även i skakflaskor, detta för att se om det är själva agarn i agarplattorna som påverkar mikroorganismernas tillväxt.Resultatet visar att vissa mikroorganismer växer bättre än andra. Detta kan bero på kolkällornas struktur, det vill säga om de är komplicerade eller ej. Studerar man mikroorganismerna var för sig skiljer de sig lite åt. Rhizopus sp växer bäst på galaktan vilket indikerar att den lyckas producera exoenzymet galaktas. Mikroorganismen saknar produktion av exoenzym när den odlas på kolkällorna cellulosa och kitin.Studerar man mikroorganismen Mucor indicus har den bäst tillväxt på galaktan och potatismjöl, vilket indikerar att den producerar exoenzymerna galaktas samt α-amylas. Den kolkällan som ger sämst tillväxt är cellulosa.Rhizomucor pusillus har bäst tillväxt på galaktan samt triglycerider och producerar då exoenzymerna galaktas och lipas. Den lyckas inte bryta ner cellulosa eller kitin och saknar då produktion av exoenzymen cellulas samt kitinas.Både xylan och galaktan testas var för sig för att kunna dra slutsatser om någon produktion av exoenzymet hemicellulas finns. Detta görs eftersom det inte finns tillgång till något rent ämne med hemicellulosa. Xylan testas även endast för exoenzymet xylanas.En av de kolkällorna som gett minst tillväxt för alla de testade mikroorganismerna var cellulosa. För att styrka detta resultat odlas mikroorganismerna upp i skakflaskor, där ingen tillväxt skedde. Den lilla tillväxt som erhölls på agarplattorna tyder på att mikroorganismerna växer med den tillsatta agarn som kolkälla och inte utnyttjar själva kolkällan. Varför mikroorganismerna inte kan tillgodo se sig cellulosa kan bero på att cellulosa har en komplex struktur som gör den svår att bryta ner utan förbehandling.
7

Biogasprocessen : Bestämning av verkningsgrad

Thomassen, Martin January 2010 (has links)
<p>Biogas is increasingly used for fuel in for example vehicles and it´s produced in a biogas processconsisting of the steps of pretreatment, digestion and gas cleaning. The pretreatment is a method usedto increase the gas production and / or destroy pathogens. The digestion is the stage when anaerobicmicroorganisms convert bio-mass of a substrate to a raw gas containing about 65% of methane. Thegas cleaning is used to increase the methane content to about 97% so the gas can be used for motors invehicles. The biogas part of the Ekeby sewage plant in Eskilstuna is using multiple substrates. Sewagesludge is mostly used but also other substrates, like food waste. The time for processing is in average25 days before the content is taken out for drying and finally for use as cover material. The producedgas will be cleaned in a water scrubber before pressurization and after that used as fuel for vehicles.The usage of support energy in the biogas process is essentially district heating, electricity and oil. Theoverall efficiency term is the energy produced in the gas minus the supporting energy divided with theenergy from possible biogas production of the substrates. For calculation of a continuous process thefact that there is always a part of the substrates which not will be digested has to be considered.Another thing to think about is that the inserted energy as material will not be converted to gasimmediately, several days is needed. In 2009 the overall efficiency in Ekeby biogas plant was inaverage 70.5%, and the value was higher during the summer than the winter. Calculation of overallefficiency of a biogas plant will always involve some uncertainties because differences of thecomposition of the substrates, the condition of the micro-organisms, digestion of many substrates atthe same time etc.</p>
8

Biogasprocessen : Bestämning av verkningsgrad

Thomassen, Martin January 2010 (has links)
Biogas is increasingly used for fuel in for example vehicles and it´s produced in a biogas processconsisting of the steps of pretreatment, digestion and gas cleaning. The pretreatment is a method usedto increase the gas production and / or destroy pathogens. The digestion is the stage when anaerobicmicroorganisms convert bio-mass of a substrate to a raw gas containing about 65% of methane. Thegas cleaning is used to increase the methane content to about 97% so the gas can be used for motors invehicles. The biogas part of the Ekeby sewage plant in Eskilstuna is using multiple substrates. Sewagesludge is mostly used but also other substrates, like food waste. The time for processing is in average25 days before the content is taken out for drying and finally for use as cover material. The producedgas will be cleaned in a water scrubber before pressurization and after that used as fuel for vehicles.The usage of support energy in the biogas process is essentially district heating, electricity and oil. Theoverall efficiency term is the energy produced in the gas minus the supporting energy divided with theenergy from possible biogas production of the substrates. For calculation of a continuous process thefact that there is always a part of the substrates which not will be digested has to be considered.Another thing to think about is that the inserted energy as material will not be converted to gasimmediately, several days is needed. In 2009 the overall efficiency in Ekeby biogas plant was inaverage 70.5%, and the value was higher during the summer than the winter. Calculation of overallefficiency of a biogas plant will always involve some uncertainties because differences of thecomposition of the substrates, the condition of the micro-organisms, digestion of many substrates atthe same time etc.
9

Förbehandlingstekniker och LCA för rötning av organiskt avfall : Modellkonstruktion och Utvärdering med ORWARE / Pretreatment methods and LCA of anaerobic digestion of organic waste

Back, Emil January 2015 (has links)
The goal of this master thesis project was to develop computer models of some plausiblepretreatment techniques and to assess the potential benefits/costs of using pretreatment andanaerobic digestion for waste management of organic waste from a system perspective. Forthis purpose a computer program called ORWARE has been used. ORWARE (organic wasteresearch) is a program for making life cycle assessments of waste management. As the mainpart of the project work the ORWARE system has been provided with three new models ofpretreatment techniques. The additions consist of: One model of pretreatment with ultrasound,one model of thermal hydrolysis and one model of a screw press. All three technologies hadthe potential to deal with technical hindrances of treating certain waste types with anaerobicdigestion.With ORWARE, life cycle assessment was made by simulations of various wastemanagement scenarios. A total of nine scenarios were simulated for the waste management ofthree different types of wastes: Bio sludge, fibre sludge and food waste, with three scenariosfor each waste type. Bio sludge is microbial sludge from biological waste water treatment.Fibre sludge is lignocellulosic sludge mainly from the pulp and paper industries. Food wasteis generally considered to be the unwanted part of food from households, restaurants and foodindustry.Three primary waste management scenarios, one scenario for each waste type, which includedpretreatment and anaerobic digestion, were simulated. There was a “bio sludge scenario” withultrasonication pretreatment, a “fibre sludge scenario” with thermal hydrolysis pretreatment(THP) and a “food waste scenario” with screw press pretreatment. The rest of the ninescenarios were assessed as comparative references to the three primary ones. These scenariosrepresented conventional methods of waste management or variations of the primaryscenarios.The resulting life cycle assessments show that anaerobic digestion of some organicwastes produces about the same amount of greenhouse gases, acidifying pollutants andeutrophying pollutants as incineration does (where the heat from incineration is made useful).The biggest downside of the anaerobic digestion waste management process is the electricityuse needed for pretreatment and for heating the anaerobic digestion. An electricity cost that inthis case is assumed to be provided through coal power, which is a common assumption whenassessing the impact of margin power utilization in life cycle assessment. If that assumptioncould instead be that the electricity is provided by a less polluting power source, the anaerobicdigestion alternative could lessen the overall pollution since the methane is commonly used asa renewable substitute for fossil fuels.In this master thesis project the ecological and economical benefits and costs of managingorganic waste through pretreatment and anaerobic digestion were assessed. These benefits andcosts were compared to conventional waste management in Sweden. The comparison showsthat anaerobic digestion of organic waste is beneficial for reduction of global warming butlikely has a greater economical cost than the conventional methods, e.g. incineration. / Syftet med det här examensarbetet var att utveckla datormodeller av några sannoliktimplementerbara förbehandlingstekniker och att uppskatta de potentiella vinsterna med atthantera organiskt avfall genom förbehandling och rötning ur ett systemperspektiv. Förändamålet har ett datorprogram som heter ORWARE använts. ORWARE (organic wasteresearch) är ett dator/beräkningsprogram för livscykelanalys av avfallshantering. I sambandmed det här arbetet har ORWARE kompletterats med tre nya modeller avförbehandlingstekniker: ultraljud, termisk hydrolys och skruvpress. Alla dessa tre tekniker harpotentialen att åtgärda tekniska hinder för att röta vissa typer av organiskt material.Med ORWARE gjordes därefter livscykelanalyser på olika avfallshanteringsscenarier. Totaltnio scenarier simulerades för hanteringen av tre typer av organiskt avfall: bioslam, fiberslamoch matavfall. Bioslam benämns ofta överskottslam och är mikrobiellt slam från biologiskvattenrening. Fiberslam kan definieras som slam från massaindustrin med en hög halt avlignocellulosa. Med matavfall menas allmänt de oönskade delarna av maten från hushåll,storkök och matindustrier.Tre primära avfallshanteringsscenarier, ett scenario för varje typ av avfall, som inkluderadeförbehandling och rötning simulerades varav ett var ”bioslamscenario” medultraljudsförbehandling, ett ”fiberslamsscenario” med förbehandling med termisk hydrolysoch ett ”matavfallsscenario” med förbehandling med skruvpress. Övriga sex scenarieruppskattades för att fungera som referenser att jämföra de tre primära scenarierna mot.De resulterande livscykelanalyserna visade att rötning av vissa organiska avfall leder tillnästan likvärdiga utsläpp av växthusgaser, försurande ämnen och gödande ämnen somförbränning av avfallet (där värmen tillvaratas). Den stora nackdelen med rötningsprocessen,är den elanvändning som krävs för förbehandling och rötning. En elanvändning som i det härfallet har antagits försedd från kolkraft, ett vanligt förekommande marginalantagande isamband med livscykelanalyser. Om rötnings- och förbehandlingsprocesserna kan drivas påmindre utsläppsintensiv elkraft är det möjligt att på det hela taget göra miljövinster eftersommetangasen från rötning med fördel ersätter fossila drivmedel.I det här projektet uppskattades miljömässig påverkan och energivinster/förluster av atthantera organiskt avfall med förbehandling och rötning. Dessa vinster och kostnader jämföresmed konventionell avfallshantering i Sverige d.v.s. förbränning av slam och sortering ochrötning efter sortering av matavfall.
10

Undersökning av biogaspotential i rötat avloppsslam

Larsson, Henric, Sjödal, Madeleine January 2011 (has links)
Avloppsreningsverket Sundet i Växjö har en rötningsanläggning som producerar biogas. Anläggningen består idag av två rötkammare och en maskin för avvattning som substratet går igenom efter rötningen. Substratet som används i rötningsprocessen är avloppsslam från Växjö. Planer finns på att utöka processen med en tredje reaktor i vilken det rötade slammet ska återrötas. Detta för att få ut mer biogas ur slammet. Det rötade slammet från reaktor 1 och 2 planeras genomgå tre förbehandlingssteg i form av fasseparering, sönderdelning och hygienisering innan det går till den tänkta reaktor 3. I arbetet genomförs ett rötningsförsök av rötat slam från Sundet med hjälp av satsvisa reaktorer som ska representera den planerade tredje reaktorn. Syftet med arbetet är därmed att undersöka hur mycket mer biogas det går att utvinna genom en andra rötningsprocess. Beräkningar på hur mycket energi det kommer gå åt i förbehandlingsstegen och hur mycket extra energi som går att utvinna i form av biogas från rötningsförsöket utfördes i arbetet. Resultaten visar att det går att utvinna mer metanrik biogas ur slammet och att förbehandlingsstegen fasseparering och sönderdelning kostar små mängder energi i förhållande till hur mycket extra energi som den extra biogasen ger. Hygieniseringen beräknas kosta förhållandevis mycket energi jämfört med den energin från den producerade biogasen. / The municipal waste treatment plant Sundet in Växjö currently has a digestion plant producing biogas. The facility consists of two digesters and a machine that dewaters the sludge after the reactors. The substrate that is used in the reactors consists of sewage sludge from Växjö. There are plans to expand the process with a third reactor in which the digested sludge will be digested a second time in order to extract more biogas. The digested sludge from reactor 1 and 2 is planned to undergo three pretreatment steps in the shape of phase separation, decomposition and sanitation before it reaches reactor 3. In the thesis a digestion process is carried out with digested sludge from Sundet in batch reactors that represents the planned third reactor. The purpose is to analyze how much extra biogas that can be extracted with a second digestion process. Calculations of how much energy that is necessary for the pretreatment stages and how much extra energy that can be extracted in the shape of biogas from the digestion process was made in the thesis. The results from the experiments shows that it is possible extract more methane rich gas from the sludge and that the pre treatment stages phase separation and decomposition use small amounts of energy compared to how much energy the extra gas gives. The sanitation process is estimated to cost quite a lot of energy compared to the energy extracted through biogas.

Page generated in 0.0818 seconds