Return to search

Conception, fabrication de puces microfluidiques à géométrie programmable et reconfigurable reposant sur les principes d’électromouillage sur diélectrique et de diélectrophorèse liquide / Conception, fabrication of programmable and reconfigurable geometry microfluidic chips, based on liquid dielectrophoresis and electrowetting on dielectric actuations

Dans le domaine des Lab-on-a-chip (LOC), la géométrie des canaux d'une puce microfluidique est souvent spécifique à la réalisation d'un protocole donné. La géométrie d'une puce est définie à l'étape de conception, avant les étapes de fabrication (généralement longues et coûteuses), et ne peut être modifiée a posteriori. Ce constat devient problématique lorsque la géométrie ne répond pas de façon satisfaisante au cahier des charges et qu'un nouveau lot de fabrication doit être démarré afin de redimensionner la puce. Pour pallier cet inconvénient, nous proposons de développer des puces microfluidiques génériques dont la géométrie est programmable et reconfigurable. Ce concept s'appuie largement sur les deux techniques de microfluidique digitale, l'électromouillage sur diélectrique (EWOD) et la diélectrophorèse liquide (LDEP). La première voie d'étude se concentre sur la technique de microfluidique LDEP. Tout d'abord, un modèle électromécanique, décrivant les comportements des liquides lors d'actionnements par LDEP ou EWOD, est établi. Ce modèle sert ensuite de base pour la conception et la fabrication de designs LDEP. Ces derniers sont testés afin d'identifier les géométries et les empilements technologiques, offrant des actionnements LDEP optimisés. L'étude, qui prend en compte un grand nombre de paramètres, montre que, avec des configurations et conditions spécifiques, les actionnements de liquide par LDEP offrent des performances égales, a minima, sur certains points, et supérieures sur d'autres par rapport à l'ensemble des études reportées dans la littérature. Enfin, un protocole de fonctionnalisation de surface par des spots de polymère de quelques microns à plusieurs dizaines de microns de diamètre, utilisant la technologie LDEP, est décrit. Cette méthode est susceptible de concurrencer directement les méthodes de fonctionnalisation classiques. La seconde voie d'étude traite du concept de géométrie programmable et reconfigurable, à l'aide de plateformes microfluidiques couplant les effets LDEP et EWOD. Dans un premier temps, les plateformes en configuration " ouverte " permettent de produire des moules à géométrie programmable pour la réalisation de puces microfluidiques en PDMS. Les résultats de cette étude prometteuse aboutissent, entre autres, à la réalisation de géométries de canaux complexes et typiques dans le domaine de la microfluidique (jonctions en " T " et valves de type " Quake "). Dans un second temps, les résultats les plus aboutis de ce manuscrit sont exposés à propos du concept de géométrie programmable et reconfigurable en utilisant de la paraffine. Un protocole spécifique, exploitant judicieusement les déplacements de liquides par EWOD et LDEP, donne lieu à la fabrication d'un grand nombre de puces microfluidiques, comportant des géométries de canaux complexes et variées. Dans les deux cas, un grand nombre de géométries peut être généré a à partir d'une seule plateforme microfluidique digitale générique. Les résultats obtenus ouvrent des perspectives de travail originales et prometteuses, dont certaines d'entre elles sont abordées en marge des objectifs initiaux. La première se trouve dans la continuité du concept de géométrie programmable et reconfigurable, en proposant une technologie à bas coût (substrat souple en Kapton et impression d'électrodes avec de l'encre conductrice). La seconde perspective instruit la compatibilité des technologies comportant des structures résonantes de type MEMS et des structures métalliques LDEP (en polysilicium) à l'échelle submicronique. / In the field of lab-on-a-chip (LOC) systems, the channel geometry of a microfluidic chip is often specific to perform a given protocol. The chip geometry is hence defined at the design step, before the fabrication steps (generally time consuming and expensive) and cannot be thereafter modified. This fact becomes an issue when the geometry does not fit satisfactorily to the specifications and a new batch of fabrication has to be started, to size afresh the microfluidic chip. To overcome this inconvenient we propose to develop a new generation of microfluidic chips with a programmable and reconfigurable geometry. This concept is widely based on both digital microfluidic techniques, the electrowetting on dielectrics (EWOD) and the liquid dielectrophoresis (LDEP) actuations. The first investigation is focused on the microfluidic technique LDEP. First, an electromechanical model for liquids behaviours during a EWOD or LDEP actuation is established. This model is then used as a basis for the LDEP patterns design and fabrication. The LDEP patterns are tested to identify the geometries and dielectric layers stacks which give optimized LDEP actuations. By taking into account a broad parameters range, the study shows that, within a precise setup and specific conditions, the LDEP actuations can have equal performances at the minimum, or better performances than those reported in the overall scientific literature until now. Finally, a surface functionalization protocol by polymer spots (diameter size ranging from a few microns to several dozens of microns) utilizing the LDEP technology is described. This method is likely to compete directly with the standard functionalization tools. The second investigation is dealing with the programmable and reconfigurable geometry concept, thanks to microfluidic platforms which get together both EWOD and LDEP technologies on a same component. Firstly, the microfluidic platform in a single plate configuration allows providing master molds with a programmable geometry for the PDMS microfluidic chip fabrication. The results about this promising study lead to the processing of complex channels geometries, typically used in the microfluidic field. Secondly, the more exciting results are exposed about the programmable and reconfigurable microfluidic concept, by using advantageously the paraffin material. A specific protocol which takes advantages of LDEP and EWOD liquids displacements produces a lot of various and different microfluidic chips with complex channels shapes. For both applications, a single generic microfluidic platform can generate a wide number of different geometries, which can be modified partially or totally thereafter. The obtained results open up novel and promising work prospects, which one of them are approached on the fringe of the initial purposes. The first one belongs to the continuity of the programmable and reconfigurable by suggesting a low cost technology based on flexible Kapton substrate and inkjet printing of silver nanoparticules. The second one investigates the technologies compatibility between MEMS/NEMS resonating structures and LDEP metal structures (in polysilicon) at the submicronic scale.

Identiferoai:union.ndltd.org:theses.fr/2013GRENY080
Date06 November 2013
CreatorsRenaudot, Raphaël
ContributorsGrenoble, Collard, Dominique, Agache, Vincent
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds