Fuel cell electric vehicles, powered by hydrogen are an enticing alternative to fossil-fuel vehicles in order to reduce greenhouse gas emissions and consequently accomplish the environmental targets set to tackle the environmental crisis. It is crucial to develop the appropriate infrastructure if the FCEVs are to be successfully accepted as an alternative to fossil-fuel vehicles. This study aims to carry out a techno-economic analysis of different hydrogen supply chain designs, that are coupled with the Swedish electricity system in order to study the inter-dependencies between them. The supply chain designs comprehend centralised production, decentralised production and a combination of both. The outputs of the hydrogen supply chain model include the hydrogen refuelling stations’ locations, the electrolyser’s locations and their respective sizes as well as the operational schedule. Both the hydrogen supply chain designs and the electricity system were parameterized with data for 2030. The supply chain design is modelled to minimize the overall cost while ensuring the hydrogen demands are met. The mixed-integer linear programming problems were modelled using Python and the optimisation software was Gurobi. The hydrogen models were run for two different scenarios, one that considers seasonal variations in hydrogen demand, and another that does not. The results show that for the scenario with seasonal variation the supply chain costs are higher than for the scenario without seasonal variation, regardless of the supply chain design. In addition, the hydrogen supply chain design with the minimal cost is based on decentralised hydrogen production. / Bränslecellsdrivna elbilar, som drivs av vätgas, är ett lockande alternativ till fossildrivna fordon för att minska växthusgasutsläppen och därigenom uppnå de miljömål som satts för att tackla miljökrisen. Det är avgörande att utveckla lämplig infrastruktur om FCEV:er ska accepteras som ett alternativ till fossildrivna fordon. Denna studie syftar till att utföra en teknisk-ekonomisk analys av olika vätgas supply kedjedesign som är kopplade till det svenska elsystemet för att studera beroendeförhållandena mellan dem. Försörjningskedjans design omfattar centraliserad produktion, decentraliserad produktion och en kombination av båda. Resultaten från vätgas supply kedja modellen inkluderar vätgasmackarnas placeringar, elektrolysörernas placeringar och deras respektive storlekar samt den operationella schemat. Både vätgas supplykedjedesi och elsystemet parameteriserades med data för 2030. Supplykedjedesignen modellerades för att minimera de totala kostnaderna samtidigt som vätgasbehoven uppfylls. Mixed-integer lineära programmeringsproblem modellerades med hjälp av Python och optimeringsprogramvaran Gurobi. Vätgasmodellerna kördes för två olika scenarier, ett som tar hänsyn till säsongsvariationer i vätgasbehovet och ett annat som inte gör det. Resultaten visar att för scenariet med säsongsvariation är supply kedja kostnaderna högre än för scenariot utan säsongsvariation, oavsett supplykedjedesignen. Dessutom är vätgas supply kedjedesignen med minimal kostnad baserad på decentraliserad vätgasproduktion.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-328243 |
Date | January 2023 |
Creators | Maria Soares Rodrigues, José |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2023:127 |
Page generated in 0.0029 seconds