Il est possible de perméabiliser la membrane plasmique des cellules par des agents chimiques (tels que les polyéthylènes glycols ou le diméthylsulfoxyde) ou par des agents physiques (tels que les ultrasons ou les impulsions électriques). Cette perméabilisation peut être réversible ou non, ce qui signifie qu’après la perméabilisation, la membrane retrouve son intégrité et ses propriétés d’hémi-perméabilité ou pas. Ces techniques peuvent être utilisées pour faire rentrer des médicaments ou des acides nucléiques dans les cellules ou pour générer des fusions cellulaires. Une approche récente, la dynamique moléculaire, utilise des simulations numériques pour prédire les effets des agents perméabilisants sur les membranes à l’échelle moléculaire, et permet d’apporter de nouvelles données pour comprendre les mécanismes moléculaires, encore peu connus à ce jour.Les impulsions dites « classiques » en électroperméabilisation, de l’ordre de la dizaine de millisecondes à la centaine de microsecondes et d’amplitude de champ de l’ordre de 100 kV/m, perméabilisent la membrane plasmique uniquement. Cependant, récemment, des impulsions plus courtes, dites impulsions nanoseconde (quelques nanosecondes) et de plus grande amplitude de champ (de l’ordre de 10 MV/m) ont été utilisées et permettent d’affecter également les membranes des organites cellulaires. Les travaux de cette thèse portent dans un premier temps sur les effets perméabilisants d’un agent chimique (le diméthylsulfoxyde, DMSO) en comparant les modèles prédictifs de la dynamique moléculaire avec des expériences in vitro sur des cellules. Le modèle numérique prédit trois régimes d’action en fonction de la concentration du DMSO. Utilisé à faible concentration, il y a déformation de la membrane plasmique. L’utilisation d’une concentration intermédiaire entraîne la formation de pores membranaires et les fortes concentrations de DMSO ont pour conséquence la destruction de la membrane. Les expériences in vitro faites sur des cellules ont confirmé ces résultats en suivant l’entrée de marqueurs de perméabilisation. Cette étude a été comparée avec la perméabilisation par un agent physique (les impulsions électriques). Dans un deuxième temps, ces travaux traitent du développement et de l’utilisation d’un nouveau dispositif d’exposition des cellules aux impulsions nanoseconde qui permet d’appliquer des champs électriques très élevés et d’observer par microscopie leurs au niveau cellulaire. Pour finir, ce dispositif a été utilisé avec des impulsions nanoseconde pour générer des pics calciques dans de cellules souches mésenchymateuses qui présentent des oscillations calciques spontanées liées à leur état de différenciation. Ces pics induits sont dus à la libération de calcium stocké dans les organites et/ou à la perméabilisation de la membrane plasmique permettant l’établissement d’un flux de calcium intramembranaire. Il est aussi possible d’utiliser des impulsions microseconde pour générer des pics calciques dans ces cellules. Dans ce cas, les pics calciques ne sont dus qu’à la perméabilisation de la membrane plasmique. En jouant sur l’amplitude des champs électriques appliqués et sur la présence ou l’absence de calcium externe, il est possible de manipuler les concentrations calciques cytosoliques en mobilisant le calcium interne ou externe. Une des particularités de ces nouveaux outils est de pouvoir être déclenchés et arrêtés instantanément, sans réminiscence, contrairement aux molécules chimiques permettant de produire des pics calciques. Ces outils pourraient donc permettre de mieux comprendre l’implication du calcium dans des mécanismes comme la différenciation, la migration ou la fécondation. / It is possible to permeabilize the cellular plasma membrane by using chemical agents (as polyethylen glycols or diméthylsulfoxyde) or physical agents (as ulstrasounds or electric pulses). This permeabilization can be reversible or not, meaning that after the permeabilization, the membrane recovers its integrity and its hemi-permeable properties. These techniques can be used for the uptake of medicines or nucleic acids or to generate cellular fusions. A recent approach, the molecular dynamics, uses numerical simulations to predict the effects of permeabilizing agents at the molecular scale, allowed generating of new data to understand the molecular mechanisms that are not completely known yet.The pulses so called “classical” in electropermeabilization, from the range of the ten of milliseconds to the hundred of microseconds and with a field amplitude in the range of 100 kV/m, can only permeabilize the plasma membrane. However, more recently, shorter pulses, so called nanopulses (few nanosecondes) and with an higher field amplitude (in the range of 10 MV/m) have been used and allow to affect also cellular organelles membranes.This thesis is, in a first time, about the permeabilizing effects of a chemical gent (the diméthylsulfoxyde, DMSO) by comparing predictive models from molecular dynamics with experiments in vitro on cells. The numerical model predicts three regimes of action depending on the DMSO concentration. Used at low concentration, there is a plasma membrane deformation. The use of an intermediate concentration lead to membrane pores formation and higher DMSO concentrations resulted in membrane destruction. The experiments done in vitro on cells confirmed these results using the following of permeabilization markers. This study has been compared to permeabilization due to a physical agent (electric pulses).Secondly, it is about the development and the use of a new cell exposure device for nanopulses that permit to apply very high electric fields and to observe induced cellular effects simultaneously by microscopy.To finish, this device has been used with nanopulses to generate calcium peaks in mesenchymal stem cells that are presenting spontaneous calcium oscillations in correlation to their differentiation state.. These induced peaks are due to the release of the calcium stored in organelles and/or to plasma membrane permeabilization leading to a intramembrane calcium flux establishment. It is also possible to use microsecond pulses to generate calcium peaks in these cells. In this case, the calcium peaks are due to the plasma membrane permeabilization . By changing the amplitude of the applied electric fields and the presence or the absence of external calcium, it is possible to manipulate cytosolic calcium concentrations by mobilizing internal or external calcium. One feature of these new tools is to be triggered and stopped instantly without reminiscence, unlike chemical molecules permitting the production of calcium peaks. These tools could therefore lead to a better understanding of the involvement of calcium in mechanisms such as differentiation, migration or fertilization.
Identifer | oai:union.ndltd.org:theses.fr/2013PA114840 |
Date | 25 November 2013 |
Creators | Ménorval, Marie-Amélie de |
Contributors | Paris 11, Mir, Lluis Maria |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0047 seconds