Denna rapport undersöker om det är möjligt att återvinna mer energi och skapa ett större energiöverskott ur värmeåtervinningstornen (AHR-tornen) kopplade till Boardmaskin 2 (BM2) och bestrykaren (CM1) i Metsä Board Husum. Potentiell energieffektivisering och styrning av systemet undersöks även. Anledningen till denna utredning är att Husums kartongbruk utreder möjligheterna till att bygga ut BM1 och öka kartongproduktionen vilket skulle medföra en ökad ångförbrukning och därför ett minskat energiöverskott och mindre elproduktion från turbinerna. Rapporten inleds med allmän information om energisektorn i Sverige och massa/kartongbruk. Innan AHR-tornens uppbyggnad beskrivs så förklaras värmeväxlares funktion. Både hur värmeväxlare fungerar generellt och hur de som används i tornen fungerar. I de tre AHR-tornen cirkulerar tre stycken rörslingor som används för att värma processvarmvatten och lokalerna i fabriken. Fokuset under projektet har främst legat på BM2 AHR1 då det är tornet som överför mest energi från torkluften och involverar alla tre slingor. Om vattnet i en slinga inte når upp till den önskade temperaturen efter det passerat tornen så värms vattnet upp med hjälp av en ångvärmeväxlare. Slingan som är placerad längst ner i BM2 AHR1 kallas för slinga 2. Den håller höga temperaturer året om och ångvärmeväxlaren i kretsen behövs inte användas. Slinga 1 som är placerad ovan värmer processvarmvattnet och måste använda sig av ångvärmeväxlaren året om. Den tredje slingan tar i princip den energi som finns över i tornet efter luften passerat de andra slingorna och håller relativt låga temperaturer, beroende på om CM1 går eller inte. För att uppnå målsättningen gjordes först effektberäkningar över tornen från olika vinterdagar. Resultat visar att tornen överför nästan dubbelt så mycket effekt från torkluften då utetemperaturen är -15°C jämfört med då utetemperaturen är 10°C . Flödesreglering gjordes sedan på slingorna för att försöka öka utloppstemperaturer och minska elförbrukning från pumparna i slingorna. Utloppstemperaturen i slinga 1 steg med 4°C men ångförbrukningen ökade i viss omfattning, och elbesparingen över pumparna blev 44630 kr/år om flödet skulle reglerats ner under hela året. Slinga 3 har styrts mot ett börvärde på 50°C med hjälp av ångvärmeväxlare vilket ansågs vara onödigt högt. Den ånga som sparas vid varje grads sänkning av börvärde och vad det motsvarar i kostnader beräknades fram till ca 1,12 ton ånga/h eller 1,06 Mkr/år. Slutligen gjordes en beräkning på den potentiella besparingen vid omplacering av slinga 1 och 2. Slinga 1 blir då placerad längst ner i tornet och tar upp mer värme från torkluften. Denna ombyggnad skulle kunna spara 1,79 ton ånga/h eller 1,69 Mkr/år vid bästa fall. / This report examines whether it is possible to recover more energy and create a larger energy surplus from the heat recovery towers (AHR towers) connected to Board machine 2 (BM2) and the coater (CM1) in Metsä Board Husum. Potential energy efficiency and control of the system are also investigated. The reason for this investigation is because Husum board mill is investigating the possibilities of expanding BM1 and increasing board production, which would lead to increased steam consumption and therefore a reduced energy surplus and less electricity production from the turbines. The report begins with general information about the energy sector in Sweden and pulp/board use. Before describing the structure of the AHR towers, the function of heat exchangers is explained. In the three AHR towers, three water-filled pipe loops are used to heat process hot water and the premises in the factory. The focus during the project has mainly been on BM2 AHR1 as that tower transfers the most energy from the drying air and involves all 3 pipes. If the water in a pipe does not reach the desired temperature after passing the towers, the water is heated by means of a steam heat exchanger. The pipe located at the bottom of BM2 AHR1 is called pipe 2. It maintains high temperatures all year round and does not need any heating from the steam heat exchanger. Pipe 1, which is located above, heats the process hot water and requires heat addition all year round. The third pipe basically gets the energy left over in the tower after the air has passed the other pipes and maintains relatively low temperatures, depending on whether the CM1 is running or not. To achieve the goal, energy calculations were first made over the towers from different winter days. Results show that the towers transfer almost twice as much energy from the drying air when the outdoor temperature is -15°C compared to when the outdoor temperature is 10°C. Flow control was then done on the pipes to try to increase outlet temperatures and reduce electricity consumption from the connected pumps. The outlet temperature in pipe 1 rose by 4°C, but the steam consumption increased to some extent, and the electricity savings over the pumps were 44630 SEK/year if the flow were to be regulated down throughout the year. Pipe 3 has been controlled to a setpoint of 50°C by means of a steam heat exchanger, which was considered to be unnecessarily high. The steam saved by each degree reduction of setpoint and what it corresponds to in money was calculated up to about 1,12 tonnes of steam/h or 1,06 million SEK/year. Finally, a calculation was made of the potential savings when relocating pipe 1 and 2. Pipe 1 is then placed at the bottom of the tower and absorbs more heat from the drying air. This conversion could save 1,79 tonnes of steam/h or 1,69 million SEK/year at best.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-184373 |
Date | January 2021 |
Creators | Eriksson, Simon |
Publisher | Umeå universitet, Institutionen för tillämpad fysik och elektronik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds