Return to search

Efeito de fungos entomopatogênicos na mortalidade de adultos, oviposição e eclosão de larvas de Aedes aegypti / Effects of entomopathogenic fungi on the adult mortality, oviposition and larval eclosion of Aedes aegypti

Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-16T11:55:33Z
No. of bitstreams: 2
Dissertação RenanLeles-2009.pdf: 2556894 bytes, checksum: be2adcc63b3f7ae1e5aa645d4cd4bbf2 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-16T13:47:39Z (GMT) No. of bitstreams: 2
Dissertação RenanLeles-2009.pdf: 2556894 bytes, checksum: be2adcc63b3f7ae1e5aa645d4cd4bbf2 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-16T13:47:39Z (GMT). No. of bitstreams: 2
Dissertação RenanLeles-2009.pdf: 2556894 bytes, checksum: be2adcc63b3f7ae1e5aa645d4cd4bbf2 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2009-05-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Aedes aegypti is the main vector of dengue fever in tropical and subtropical countries in the world. Due to the absence of a vaccine for dengue fever, the vector´s combat is fundamental fot the disease control. The spread of mosquito populations resistant to chemical insecticides shows the necessity to establish integrate vector control programs. Entomopathogenic fungi have potential for biological control of A. aegypti; however, only tow fungal species. Metarhizium anisopliae and Beauveria bassiana, have been stutied more intensely for this purpose. The present study evaluated the pathogenicity of nineteen fungal species of the Hypocreales order against A. aegypti adults, and investigated new methods for fungal application to control these mosquitoes and for detection and isolation of fungi and oomycetes from A. aegypti larvae and adults. The results clearly showed the potential of fungi, especially form the Metarhizium genus, for the combat of eggs and adult mosquitoes. The present study proposes a new pratical method for the detection and isolation of entomopathogenic fungi from infected mosquitoes collected in the field.</dcvalue><dcvalue element="description" qualifier="abstract" language="eng">Aedes aegypti is the main vector of dengue fever in tropical and subtropical countries in the world. Due to the absence of a vaccine for dengue fever, the vector´s combat is fundamental fot the disease control. The spread of mosquito populations resistant to chemical insecticides shows the necessity to establish integrate vector control programs. Entomopathogenic fungi have potential for biological control of A. aegypti; however, only tow fungal species. Metarhizium anisopliae and Beauveria bassiana, have been stutied more intensely for this purpose. The present study evaluated the pathogenicity of nineteen fungal species of the Hypocreales order against A. aegypti adults, and investigated new methods for fungal application to control these mosquitoes and for detection and isolation of fungi and oomycetes from A. aegypti larvae and adults. The results clearly showed the potential of fungi, especially form the Metarhizium genus, for the combat of eggs and adult mosquitoes. The present study proposes a new pratical method for the detection and isolation of entomopathogenic fungi from infected mosquitoes collected in the field. / O interesse em fungos entomopatogênicos para controle integrado de mosquitos é
grande. Entretanto pouco se sabe sobre o efeito de fungos em adultos e transmissão
de micoses em Aedes aegypti. No presente trabalho, estudaram-se, em condições de
laboratório, a atividade adulticida e a propagação da infecção para ovos postos por
fêmeas tratadas com três isolados de Paecilomyces spp, dois Isaria spp, um
Penicillium sp e um Metarhizium anisopliae. Foram realizados dois experimentos: Com
conídios secos de M. anisopliae IP 46 a 5x104 conídios/cm3 (Teste 1) e com conídios
dos outros fungos formulados em óleo-água, a 10% do óleo, a 106 conídios/cm2 (Teste
2). As fêmeas foram alimentadas com sangue de camundongo em dias alternados e,
para ambos os sexos, solução açucarada (5%) foi ofertada ad libitum. Os adultos
foram mantidos a 25ºC, umidade relativa (UR) de 70% e fotofase de 12 h até 10 d póstratamento
(p.t.). Indivíduos mortos e ovos postos foram retirados, contados e
incubados em UR > 98% e 25ºC por 15 d. Os ovos foram em seguida submersos em
água e a eclosão de larvas avaliada diariamente até 5 d para todos os testes.
Primeiros ovos postos foram encontrados em até 48 horas após a primeira
hematofagia das fêmeas. O número médio de ovos/fêmea/dia (o/f/d) no teste 1 foi de
2,5 e no teste 2 variou entre 0,15 (Paecilomyces carneus CG 525) e 1,3 o/f/d (Isaria
fumoserosea CG 325). Apenas IP 46 formou hifas e novos conídios sobre ovos e
reduziu significativamente a eclosão quantitativa de larvas (39,2%), comparado com o
grupo controle (68,6%; t = 2,3; P = 0,04). Nos demais testes a eclosão foi acima de
40%. Primeiros adultos geralmente morreram a partir de 48 h p.t. e o maior número de
mortos foi encontrado 2 a 4 d depois, independentemente do teste realizado. A maior
mortalidade, 10 d p.t. foi 39% (IP 46), seguido por 28% (Isaria farinosa CG 195),
16,4% (Paecilomyces marquandii CG 190), 8% (Penicillium sp IP 182), 6,8% (P.
carneus CG 525), 4,7% (Paecilomyces lilacinus CG 362) e 4,6% (I. fumoserosea CG
325). A mortalidade encontrada para os controles foi ≤ 12% no mesmo momento.
Mosquitos tratados com CG 195, CG 525, IP 46, CG 325 e CG 190 tiveram
desenvolvimento de fungo em cadáveres. Mosquitos mortos pertencentes aos grupos
tratados com os isolados IP 182, CG362 e controle não tiveram desenvolvimento de
micélio. Os resultados mostraram que, de acordo com o tipo de aplicação utilizada,
fêmeas de A. aegypti contaminaram ovos e assim propagaram a micose. Tratamento
com conídios secos levou a uma maior contaminação das fêmeas e assim também
dos ovos postos, comparada com a aplicação indireta utilizada para os demais fungos,
no qual provavelmente a contaminação ficou restrita às partes do corpo em contato
com a superfície tratada. A mortalidade reduzida encontrada para todos os fungos e
para ambas técnicas pode estar relacionada à umidade subotima na qual foram
mantidos os mosquitos e também ao tempo curto de observação dos adultos póstratamento.
Os fungos testados têm atividade reduzida em adultos de A. aegypti e
fêmeas desse mosquito podem transmitir a micose durante a oviposição. Mais estudos
precisam ser feitos para selecionar linhagens mais virulentas e entender melhor
mecanismos de infecção e transmissão horizontal de fungos em A. aegypti.</dcvalue><dcvalue element="description" qualifier="resumo" language="por">O interesse em fungos entomopatogênicos para controle integrado de mosquitos é
grande. Entretanto pouco se sabe sobre o efeito de fungos em adultos e transmissão
de micoses em Aedes aegypti. No presente trabalho, estudaram-se, em condições de
laboratório, a atividade adulticida e a propagação da infecção para ovos postos por
fêmeas tratadas com três isolados de Paecilomyces spp, dois Isaria spp, um
Penicillium sp e um Metarhizium anisopliae. Foram realizados dois experimentos: Com
conídios secos de M. anisopliae IP 46 a 5x104 conídios/cm3 (Teste 1) e com conídios
dos outros fungos formulados em óleo-água, a 10% do óleo, a 106 conídios/cm2 (Teste
2). As fêmeas foram alimentadas com sangue de camundongo em dias alternados e,
para ambos os sexos, solução açucarada (5%) foi ofertada ad libitum. Os adultos
foram mantidos a 25ºC, umidade relativa (UR) de 70% e fotofase de 12 h até 10 d póstratamento
(p.t.). Indivíduos mortos e ovos postos foram retirados, contados e
incubados em UR > 98% e 25ºC por 15 d. Os ovos foram em seguida submersos em
água e a eclosão de larvas avaliada diariamente até 5 d para todos os testes.
Primeiros ovos postos foram encontrados em até 48 horas após a primeira
hematofagia das fêmeas. O número médio de ovos/fêmea/dia (o/f/d) no teste 1 foi de
2,5 e no teste 2 variou entre 0,15 (Paecilomyces carneus CG 525) e 1,3 o/f/d (Isaria
fumoserosea CG 325). Apenas IP 46 formou hifas e novos conídios sobre ovos e
reduziu significativamente a eclosão quantitativa de larvas (39,2%), comparado com o
grupo controle (68,6%; t = 2,3; P = 0,04). Nos demais testes a eclosão foi acima de
40%. Primeiros adultos geralmente morreram a partir de 48 h p.t. e o maior número de
mortos foi encontrado 2 a 4 d depois, independentemente do teste realizado. A maior
mortalidade, 10 d p.t. foi 39% (IP 46), seguido por 28% (Isaria farinosa CG 195),
16,4% (Paecilomyces marquandii CG 190), 8% (Penicillium sp IP 182), 6,8% (P.
carneus CG 525), 4,7% (Paecilomyces lilacinus CG 362) e 4,6% (I. fumoserosea CG
325). A mortalidade encontrada para os controles foi ≤ 12% no mesmo momento.
Mosquitos tratados com CG 195, CG 525, IP 46, CG 325 e CG 190 tiveram
desenvolvimento de fungo em cadáveres. Mosquitos mortos pertencentes aos grupos
tratados com os isolados IP 182, CG362 e controle não tiveram desenvolvimento de
micélio. Os resultados mostraram que, de acordo com o tipo de aplicação utilizada,
fêmeas de A. aegypti contaminaram ovos e assim propagaram a micose. Tratamento
com conídios secos levou a uma maior contaminação das fêmeas e assim também
dos ovos postos, comparada com a aplicação indireta utilizada para os demais fungos,
no qual provavelmente a contaminação ficou restrita às partes do corpo em contato
com a superfície tratada. A mortalidade reduzida encontrada para todos os fungos e
para ambas técnicas pode estar relacionada à umidade subotima na qual foram
mantidos os mosquitos e também ao tempo curto de observação dos adultos póstratamento.
Os fungos testados têm atividade reduzida em adultos de A. aegypti e
fêmeas desse mosquito podem transmitir a micose durante a oviposição. Mais estudos
precisam ser feitos para selecionar linhagens mais virulentas e entender melhor
mecanismos de infecção e transmissão horizontal de fungos em A. aegypti

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3071
Date25 May 2009
CreatorsLeles, Renan Nunes
ContributorsLuz, Wolf Christian, Santos, Adelair Helena dos
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Medicina Tropical e Saúde Publica (IPTSP), UFG, Brasil, Instituto de Patologia Tropical e Saúde Pública - IPTSP (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation6085308344741430434, 600, 600, 600, 600, -7769011444564556288, -4544576747271574306, 2075167498588264571, Albernaz DAS, Tai MHH, Luz C 2009. Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti. Med Vet Entomol 23: no prelo, doi nº: 10.1111/j.1365- 2915.2008.00792x Alves SB 1998. Fungos entomopatogênicos. In: Alves SB, Controle Microbiano de Insetos, Fealq, Piracicaba, p. 289-381. Alves SB, Marchini LC, Pereira RM, Baumgratz LL 1996. Effects of some insect pathogens on the africanized honey bee, Apis mellifera L. (Hym., Apidae). J Appl Entomol 97: 127-129. Alves SB, Alves LFA, Lopes RB, Pereira RM, Vieira AS 2002. Potential of some Metarhizium anisopliae isolates for control of Culex quinquefasciatus (Dipt. Culicidae). J Appl Entomol 126: 504-509. Austwick PKC 1980. The pathogenic aspects of the use of fungi: The need for risk analysis and registration of fungi. Ecol Bull 31: 91-102. Bateman RP, Carey M, Moore D, Prior C 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to the desert locusts at low humidities. Ann Appl Biol 122: 145-152. Bateman R 1997. Methods of application of microbial pesticide formulations for the control of grasshoppers and locusts. Mem Ent Soc Can 171: 69-81. Batta YA 2003. Production and testing of novel formulations of the entomopathogenic fungus Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes). Crop Prot 22: 415-422. Becnel JJ, Johnson MA 2000. Impact of Edhazardia aedis (Microsporidia: Culicosporidae) on a seminatural population of Aedes aegypti (Diptera: Culicidae). Biol Control 18: 39-48. Beserra EB, Fernandes CRM, Queiroga MFC, de Castro Jr FP 2007. Resistência de populações de Aedes aegypti (L.) (Diptera: Culicidae) ao organofosforado temefós na Paraíba. Neotrop Entomol 36: 303-307. Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB 2005. Fungal pathogen reduces potencial for malaria transmission. Science 308: 1638-1641. 44 Boisvert M, Boisvert J 2000. Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: A review of laboratory and field experiments. Biocont Sci Tech 10: 517-561. Braga IA, Lima JBP, Soares SS, Valle D 2004. Aedes aegypti resistance to temephos during 2001 in several municipalities in the States of Rio de Janeiro, Sergipe, and Alagoas, Brazil. Mem Inst Oswaldo Cruz 99: 199-203. Braga IA, Mello CB, Peixoto AA, Valle D 2005. Evaluation of methoprene effect on Aedes aegypti (Diptera: Culicidae) development in laboratory conditions. Mem Inst Oswaldo Cruz 100: 435-440. Braga IA, Valle D 2007. Aedes aegypti: vigilância, monitoramento da resistência e alternativas de controle no Brasil. Epidemiol Serv Saude 16: 295-302. Broza M, Pereira RM, Stimac JL 2001. The nonsusceptibility of soil Collembola to insect pathogens and their potential as scavengers of microbial pesticides. Pedobiol 45: 523-534. Butt TM, Carreck NL, Ibrahim L, Williams IH 1998. Honey bee mediated infection of pollen beetle (Meligethes aeneus Fab.) by insect–pathogenic fungus Metarhizium anisopliae. Biocont Sci Technol 8: 533-538. Carson R 1962. Silent spring, Mariner Books, 400 pp. Carvalho MSL, Caldas ED, Degallier N, Vilarinhos PTR, de Souza LCKR, Yoshizawa MAC, Knox MB, Oliveira C 2004. Susceptibility of Aedes aegypti larvae to the insecticide temephos in the Federal District, Brazil. Rev Saúde Públ 38: 623-629. CDC (Centers for Disease Control and Prevention) [homepage on the internet]. Outbreak Notice: Update: Dengue, tropical and subtropical regions [acesso em 03 de Dezembro de 2008]. Disponível em: http://wwwn.cdc.gov/ travel/contentDengueTropicalSubTropical.aspx Chavez J, Vargas J, Vargas F 2005. Resistance to deltamethrine in two populations of Aedes aegypti (Diptera, Culicidae) from Peru. Rev Peru Biol 12: 161-164. Consoli RAGB, Oliveira RL 1998. Principais mosquitos de importância sanitária no Brasil, Fiocruz, Rio de Janeiro, 225 pp. 45 Cunha MP, Lima JNP, Brogdon WG, Moya GE, Valle D 2005. Monitoring of resistance to the pyrethroid cypermethrin in Brazilian Aedes aegypti (Diptera: Culicidae) populations collected between 2001 and 2003. Mem Inst Oswaldo Cruz 100: 441-444. Eiras AE 2005. Culicidae. In Neves DP, Melo AL, Linardi PM, Vitor RWA. Parasitologia humana, Atheneu, São Paulo, p. 355-367. Fargues J, Quedraogo A, Goettel MS, Lomer CJ 1997. Effects of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocont Sci Technol 7: 345-356. Foley DH, Rueda LM, Wilkerson RC 2007. Insight into global mosquito biogeography from country species records. J Med Entomol 44: 554-567. Genthener FJ, Chancy CA, Couch JA, Foss SS, Middauugh DP, Geoge SE, Warren MA, Bantle JA 1998. Toxicity and pathogenicity testing of the insect pest control fungus Metarhizium anisopliae. Arch Environ Contam Toxicol 35: 317-324. Goettel MS, Hajek AE, Siegel JP, Evans HC 2001. Safety of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N, editors. Fungi as Biocontrol Agents: progress, problems and potential: 347-376. Honório NA, Silva WC, Leite PJ, Gonçalves JM, Lounibos LP, Oliveira RL 2003. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98: 191-198. Ignoffo CM 1973. Effects of entomopathogens on vertebrates. Ann New York Acad Sci 217: 141-172. Lecuona RE, Edelstein JD, Berretta MF, Rossa FR, Arcas JA 2001. Evaluation of Beauveria bassiana (Hyphomycetes) strains as potential agents for control of Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 38: 172-179. Liew C, Curtis CF 2004. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vet Entomol 18: 351-360. 46 Lima JBP, Cunha MP, Silva Júnior RC, Galardo AKR, Soares SS, Braga IA, Ramos RP, Valle D 2003. Resistance of Aedes aegypti to organophosphates in several municipalities in the state of Rio de Janeiro and Espírito Santo, Brazil. Am J Trop Med Hyg 68: 329-333. Lima JBP, Melo NV, Valle D 2005. Residual effect of two Bacillus thuringiensis var. israelensis products assayed against Aedes aegypti (Diptera: Culicidae) in laboratory and outdoors at Rio de Janeiro, Brazil. Rev Inst Med Trop 47: 125-130. Lima EP, Filho AMO, Lima JWO, Ramos Júnior NA, Cavalcanti LPG, Pontes RJS 2006. Aedes aegypti resistance to temefos in counties of Ceará State. Rev Soc Bras Med Trop 39: 259-263. Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M 2001. Biological control of locusts and grasshoppers. Annu Rev Entomol 46: 667-702. Luna JED, Martins MF, Anjos AF, Kuwabara EF, Navarro-Silva MA 2004. Susceptibility of Aedes aegypti to temephos and cypermethrin insecticides, Brazil. Rev Saúde Públ 38: 2 pp. Luz C, Batagin I 2005. Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathologia 160: 51-62. Luz C, Tigano MS, Silva IG, Cordeiro CMT, Aljanabi SM 1998. Selection of Beauveria bassiana and Metarhizium anisopliae isolates to control Triatoma infestans. Mem Inst Oswaldo Cruz 93: 839-846. Luz C, Tai MHH, Santos AH, Rocha LFN, Albernaz DAS, Silva HHG 2007. Ovicidal activity of entomopathogenic hyphomycetes on Aedes aegypti (Diptera: Culicidae) under laboratory conditions. J Med Entomol 44: 799- 804. Luz C, Tai MHH, Santos AH, Silva HHG 2008. Impact of moisture on survival of Aedes aegypti eggs and ovicidal activity of Metarhizium anisopliae under laboratory conditions. Mem Inst Oswaldo Cruz 103: 214-215. Macoris MLG, Andrighetti MTM, Takaku L, Glasser CM, Garbeloto VC, Cirino VCB 1999. Alteration in susceptibility response of Aedes aegypti to organophosphates in cities in the state of São Paulo, Brazil. Rev Saúde Públ 33: 521-522. 47 Macoris MLG, Andrighetti MTM, Takau L, Glasser CM, Garbeloto VC, Bracco JE 2003. Resistance of Aedes aegypti from the State of São Paulo, Brazil, to organophosphates insecticides. Mem Inst Oswaldo Cruz 98: 703-708. Maranga RO, Kaaya GP, Mueke JM, Hassanali A 2005. Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (Ixodidae) in relation to seasonal changes. Mycopathologia 159: 527-532. Massad E, Coutinho FAB, Burattini MN, Lopez LF 2001. The risk of yellow fever in a dengue-infested área. Trans R Soc Trop Med Hyg 95: 370-374. Melo-Santos MAV, Sanches EG, Jesus FJ, Regis L 2001. Evaluation of a new tablet formulation based on Bacillus thuringiensis sorovar. israelensis for larvicidal control of Aedes aegypti. Mem Inst Oswaldo Cruz 96: 1-2. Milner RJ, Lim RP, Hunter DM 2002. Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Manag Sci 58: 718-723. Ministério da Saúde 2008a. Situação epidemiológica da dengue 2008. Nota Técnica: 6 pp. Ministério da Saúde 2008b. Situação da febre amarela silvestre no Brasil, 2007 e 2008. Boletim Diário: 4 pp. Nam VS, Yen NT, Kay BH, Marten GG, Reid JW 1998. Erradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am J Trop Med Hyg 59: 657-660. OMS 1997. Dengue haemorrhagic fever. Diagnosis, treatment and control. WHO, Geneva, viii + 84 pp. Paula AR, Brito ES, Pereira CR, Carrera MP, Samuels RI 2008. Susceptibility of adult Aedes aegypti (Díptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for Dengue vector control. Biocont Sci Technol 18: 1017-1025. Pedigo LP 2002. Entomology & Pest Management, Prentice Hall, New Jersey, 784 pp. 48 Rodriguez MM, Bisset J, Ruiz M, Soca A 2002. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol 39: 882-888. Saik JE, Lacey LA, Lacey CM 1990. Safety of microbial insecticides to vertebrates – domestics animals and wildlife. In: Laird M, Lacey CM, Davidson EW, editors. Safety of Microbial Insecticides: 115-132. Santos AH, Tai MHH, Rocha LFN, Silva HHG, Luz C 2009. Dependence of Metarhizium anisopliae on high humidity for ovicidal activity on Aedes aegypti. Biol Cont 50: 37-42. Scholte EJ, Njiru BN, Smallegange RC, Takken W, Knols BGJ 2003. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar J 2: 8pp. Scholte EJ, Knols BGJ, Samson RA, Takken W 2004a. Entomopathogenic fungi for mosquito control: A review. J Insect Sci 4: 24pp. Scholte EJ, Knols BGJ, Takken W 2004b. Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector Anopheles gambiae s.s. Malar J 3: 6pp. Scholte EJ, Ng’habi K, Kihonda J, Takken W, Paaijmans K, Abdulla S, Killeen GF, Knols BGJ 2005. An entomopathogenic fungus for control of adult african malaria mosquitoes. Science 308: 1641-1642. Scholte EJ, Takken W, Knols BGJ 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102: 151-158. Senna – Nunes M, Costa G, Bittencourt VREP, Souza EJ 2002. Avaliação in vitro dos fungos Aspergillus flavus e Penicillium corylophilum em adultos de Musca domestica (Diptera: Muscidae). Bol Chil Parasitol 57: 9-14. Siegel JP, Shadduck JA 1990. Safety of microbial insecticides to vertebrates – humans. In: Laird M, Lacey CM, Davidson EW, editors. Safety of Microbial Insecticides: 101-113. 49 Silva HHG, Silva IG, Lira KS 1998. Metodologia de criação, manutenção de adultos e estocagem de ovos de Aedes aegypti (Linnaeus, 1762) em laboratório. Rev Pat Trop 27: 53-63. Silva HHG, Silva IG 1999. Influência do período de quiescência dos ovos sobre o ciclo de vida de Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae) em condições de laboratório. Rev Soc Bras Med Trop 32: 349-355. Silva RO, Silva HHG, Luz C 2004. Effect of Metarhizium anisopliae isolated from soil of the central brazilian cerrado against Aedes aegypti larvae under laboratory conditions. Rev Pat Trop 33: 207-216 Siqueira Jr JB, Martelli CMT, Coelho GE, Simplício ACR, Hatch DL 2005. Dengue and Dengue Hemorrhagic Fever, Brazil, 1981–2002. Emerg Infect Dis 11: 48-53. Tauil PL 2002. Aspectos críticos do controle do dengue no Brasil. Cad Saúde Publ 18: 867-871. Teixeira MG, Barreto ML, Costa MCN, Ferreira LDA, Vasconcelos PFC 2002. Avaliação de impacto de ações de combate ao Aedes aegypti na cidade de Salvador, Bahia. Rev Bras Epidemiol 5: 108-115. Vestergard S, Cherry A, Keller S, Goettel M 2003. Safety of Hyphomycetes fungi as microbial control agents. In: Hokkanen HMT, Hajek AE, editors. Enviroment Impact Microbial Insect: 35-62. Wasti SS, Hartmann GC, Rousseau AJ 1980. Gypsy moth (Lymantria dispar) mycoses by 2 species of entomopatogenous fungi and an assessment of their avian toxicity. Parasitol 80: 419-424. Zimmermann G 1993. The entomopathogenic fungus Metarhizium

Page generated in 0.0048 seconds