Return to search

Sur quelques problèmes d'apprentissage supervisé et non supervisé

L'objectif de cette Thèse est d'apporter une contribution au problème de l'apprentissage statistique, notamment en développant des méthodes pour prendre en compte des données fonctionnelles. Dans la première partie, nous développons une approche de type plus proches voisins pour la régression fonctionnelle. Dans la deuxième, nous étudions les propriétés de la méthode de quantification dans des espaces de dimension infinie. Nous appliquons ensuite cette méthode pour réaliser une étude comportementale de bancs d'anchois. Enfin, la dernière partie est dédiée au problème de l'estimation des ensembles de niveaux de la fonction de régression dans un cadre multivarié.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00455528
Date27 November 2009
CreatorsLaloë, Thomas
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds