De nos jours, la grande puissance de calcul et l'importante capacité de stockage fournie par les systèmes de calcul distribué à large échelle sont exploitées par des applications dont les besoins grandissent continuellement. Les plates-formes de ces systèmes sont composées d'un ensemble de ressources reliées entre elles par une infrastructure de communication. Dans ce type de système, comme dans n'importe quel environnement de calcul, il est courant que des solutions innovantes soient étudiées. Leur adoption nécessite une phase d'expérimentation pour que l'on puisse les valider et les comparer aux solutions existantes ou en développement. Néanmoins, de par leur nature distribuée, l'exécution d'expériences dans ces environnements est difficile et coûteuse. Dans ces systèmes, l'ordre d'exécution dépend de l'ordre des événements, lequel peut changer d'une exécution à l'autre. L'absence de reproductibilité des expériences rend complexe la conception, le développement et la validation de nouvelles solutions. De plus, les ressources peu- vent changer d'état ou intégrer le système dynamiquement ; les architectures sont partagées et les interférences entre applications, ou même entre processus d'une même application, peuvent affecter le comportement général du système. Enfin, le temps d'exécution d'application à large échelle sur ces sys- tèmes est souvent long, ce qui empêche en général l'exploration exhaustive des valeurs des éventuels paramètres de cette application. Pour toutes ces raisons, les expérimentations dans ce domaine sont souvent basées sur la simulation. Diverses approches existent actuellement pour simuler le calcul dis- tribué à large-échelle. Parmi celles-ci, une grande partie est dédiée à des architectures particulières, comme les grappes de calcul, les grilles de calcul ou encore les plates-formes de calcul bénévole. Néan- moins, ces simulateurs adressent les mêmes problèmes : modéliser le réseau et gérer les ressources de calcul. De plus, leurs besoins sont les même quelle que soit l'architecture cible : la simulation doit être rapide et passer à l'échelle. Pour respecter ces exigences, la simulation de systèmes distribués à large échelle repose sur des techniques de modélisation pour approximer le comportement du système. Cependant, les estimations obtenues par ces modèles peuvent être fausses. Quand c'est le cas, faire confiance à des résultats obtenus par simulation peut amener à des conclusions aléatoires. En d'autres mots, il est nécessaire de connaître la précision des modèles que l'on utilise pour que les conclusions basées sur des résultats de simulation soient crédibles. Mais malgré l'importance de ce dernier point, il existe très rarement des études sur celui-ci. Durant cette thèse, nous nous sommes intéressés à la problématique de la précision des modèles pour les architectures de calcul distribué à large-échelle. Pour atteindre cet objectif, nous avons mené une évaluation de la précision des modèles existants ainsi que des nouveaux modèles conçus pendant cette thèse. Grâce à cette évaluation, nous avons proposé des améliorations pour atténuer les erreurs dues aux modèles en utilisant SimGrid comme cas d'étude. Nous avons aussi évalué les effets des ces améliorations en terme de passage à l'échelle et de vitesse d'exécution. Une contribution majeure de nos travaux est le développement de modèles plus intuitifs et meilleurs que l'existant, que ce soit en termes de précision, vitesse ou passage à l'échelle. Enfin, nous avons mis en lumière les principaux en- jeux de la modélisation des systèmes distribuées à large-échelle en montrant que le principal problème provient de la négligence de certains phénomènes importants.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00625497 |
Date | 04 July 2011 |
Creators | Madeira De Campos Velho, Pedro Antonio |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds