Return to search

Människors förtroende för AI: Könsrelaterad bias i AI-språkmodeller / People's Trust in AI: Gender Bias in Large Language Models

I en tid då AI-språkmodeller används alltmer i vår vardag, blir det relevant att undersöka hur det påverkar samhället. Denna studie undersöker, utifrån teorier om etik och jämställdhet, hur AI-språkmodeller i sina texter ger uttryck för mångfald, icke-diskriminering och rättvisa. Studien fokuserar på att identifiera och analysera förekomsten av könsbias i AI-språkmodellernas svar samt hur det påverkar människors förtroende för dessa system. En fallstudie genomfördes på tre AI-språkmodeller - ChatGPT 3.5, Gemini och Llama-2 70B, där data insamlades via intervjuer med dessa modeller. Därefter gjordes intervjuer med mänskliga informanter som reflekterade över AI-språkmodellernas svar. AI-språkmodellerna visade en obalans i hur de behandlar kvinnor och män vilket kan förstärka befintliga könsstereotyper. Detta kan påverka människors förtroende för AI-språkmodeller och informanterna lyfte problematiken om vad neutralitet och rättvisa innebär. För att skapa mer ansvarsfulla och rättvisa AI-system krävs medvetna insatser för att integrera etiska och jämställdhetsperspektiv i AI-utveckling och användning. / In a time when Large Language Models (LLMs) are increasingly used in our daily lives, it becomes important to investigate how this affects society. This study examines how LLMs express diversity, non-discrimination, and fairness in texts, based on theories of ethics and gender equality. The study focuses on identifying and analyzing the presence of gender bias in the responses of LLMs and how this impacts people's trust in these systems. A case study was conducted on three LLMs: ChatGPT 3.5, Gemini, and Llama-2 70B, where data was collected through interviews with them. Subsequently, interviews were conducted with human informants who reflected on the LLMs’ responses. The LLMs showed imbalance towards gender, potentially reinforcing existing gender stereotypes. This can affect people's trust in LLMs, and the informants highlighted the issue of what neutrality and fairness entail. To create more responsible and fair AI systems, conscious efforts are required to integrate ethical and equality perspectives into AI development and usage.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-106267
Date January 2024
CreatorsForsman, Angela, Martinsson, Jonathan
PublisherLuleå tekniska universitet, Institutionen för system- och rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0035 seconds