Return to search

Codage du flot géodésique sur les surfaces hyperboliques de volume fini

Cette thèse traite de l'étude des objets reliés au codage de Bowen-Series du flot géodésique pour des surfaces hyperboliques de volume fini. On démontre d'abord que le billard géodésique associé à domaine fondamental "even corners" d'un groupe fuchsien cofini est conjugué à une bijection du tore, appelée codage étendu, dont l'un des facteurs est la transformation de Bowen-Series. L'intérêt principal de cette conjugaison est qu'elle ne fait toujours intervenir qu'un nombre fini d'objets. On retrouve ensuite des résultats classiques sur le codage de Bowen-Series : il est orbite-équivalent au groupe, ses points périodiques sont denses, et ses orbites périodiques sont en bijection avec les classes d'équivalence d'hyperboliques primitifs du groupe ; ce qui permet finalement de relier sa fonction zeta de Ruelle à la fonction zeta de Selberg. Les preuves de ces résultats s'appuient sur un lemme combinatoire qui abstrait la propriété d'orbite-équivalence à des familles de relations qui peuvent être définies sur tout ensemble sur lequel agit le groupe. Il est aussi possible de conjuguer le codage étendu à un sous-shift de type fini, sauf pour un ensemble dénombrable de points. Enfin, on prouve que les distributions propres pour la valeur propre 1 de l'opérateur de transfert sont les distributions de Helgason de fonctions propres du laplacien sur la surface, puis que l'on peut associer à toute telle distribution propre une fonction propre non triviale de l'opérateur de transfert et que ce procédé admet un inverse dans certains cas

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00553138
Date03 December 2010
CreatorsPit, Vincent
PublisherUniversité Sciences et Technologies - Bordeaux I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds