Return to search

Convolution type operators on cones and asymptotic spectral theory

Die Arbeit beschäftigt sich mit Faltungsoperatoren auf Kegeln, die in Lebesgueräumen L^p(R^2) (1<p<\infty) von Funktionen auf der Ebene wirken.
Es werden asymptotische Spektraleigenschaften der zugehörigen Finite Sections studiert. Im Falle p=2 (Hilbertraum) wird das Invertierbarkeitsproblem von Operatoren vom Faltungstyp auf Kegeln mit Hilfe der Methode der Standard-Modell-Algebren untersucht.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18097
Date23 January 2004
CreatorsMascarenhas, Helena
ContributorsTechnische Universität Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0044 seconds