Return to search

Performance enhancement of organic photovoltaic cells through nanostructuring and molecular doping

Die vorliegende Arbeit beschäftigt sich mit der Leistungssteigerung organischer Solarzellen durch Änderung der Geometrie an der Donor-Akzeptor Grenzfläche und dem Einstellen der elektronischen Eigenschaften von Grenzflächen durch molekulares p-Dotieren. Kristalline und gleichmäßige Nanosäulen aus dem organischen Halbleiter Pentazen wurden durch glancing angle deposition (GLAD) hergestellt, die einen ineinandergreifenden Heteroübergang zu Methanofulleren [6,6]-Phenyl-C61-Butansäure Methylester (PCBM) als Akzeptor ermöglichten. Die Kurzschlussspannung der nanosäulenbasierten Solarzellen war signifikant erhöht im Vergleich zu planaren Heteroübergängen zwischen denselben Materialien. Die Leistungssteigerung der Solarzellen konnte maßgebend der vergrößerten Grenzfläche zugewiesen werden, wegen des verringerten Einflusses der kurzen Exciton Diffusionslänge. Molekulares p-Dotieren mit Tetrafluorotetracyanoquinodimethan (F4TCNQ) als Dotand in polyfuranbasierten Solarzellen wurde für verschiede Dotierkonzentrationen untersucht. Ultraviolettphotoelektronenspektroskopie wurde verwendet, um die Veränderungen der Energieniveaus mit zunehmender Dotierkonzentration zu analysieren, welche zu einer Vergrößerung der 0,2 V Kurzschlussspannung auf bis zu 0,4 V führte. Nach Kombination dieser Beobachtung mit Ergebnissen an dotierten Polymerfilmen, insbesondere bezüglich deren Morphologie und Absorptionsverhalten, wurde vorgeschlagen, dass ein resultierender Dipol an der Donor-Akzeptorgrenzfläche präsent ist. Zusammenfassend zeigt die vorliegende Arbeit das Potential sowohl der GLAD Technik als auch des molekularen, elektrischen Dotierens für die Leistungsverbesserung organischer Solarzellen. / The present work mainly focuses on improving the performance of OPVCs by tailoring the donor-acceptor interface geometry and by tuning the electrical properties of interfaces with p-type molecular doping. Crystalline and uniform nanocolumns of pentacene (PEN) and diindenoperylene (DIP) were fabricated by glancing angle deposition (GLAD), forming an interdigitated donor/acceptor heterojunction with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and/or fullerene as the electron acceptor. The short circuit current of nanocolumn-based OPVCs increased significantly compared to planar heterojunction OPVCs made from the same materials. The performance improvement of OPVCs had been verified to be contributed decisively by the donor-acceptor interface area enlargement because of reduced impact of short exciton diffusion length in organic materials. P-type molecular doping as applied in polyfuran (PF) based OPVCs was investigated by using tetrafluorotetracyanoquinodimethane (F4-TCNQ) as the dopant for various doping ratios. Ultraviolet photoelectron spectroscopy (UPS) was applied to analyze the energy level shift with increasing doping ratio leading to the enlargement of the open circuit voltage in OPVCs, from 0.2 V to close to 0.4 V. Combining this observation with the results of doped polymer films, their morphology and absorption behavior, a net dipole pointing towards the donor material at the donor-acceptor interface of OPVCs is proposed. Overall, this work demonstrates the potential of both the GLAD technique and molecular electrical doping for improving the performance of OPVCs.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17802
Date05 March 2015
CreatorsYu, Shuwen
ContributorsKoch, Norbert, Röder, Beate, Neher, Dieter
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0024 seconds