Return to search

Diakoptics basée en acteurs pour la simulation, la surveillance et la comande des réseaux intelligents / Actor's based diakoptics for the simulation, monitoring and control of smart grids

La simulation de systèmes d'énergie est un outil important pour la conception, le développement et l'évaluation de nouvelles architectures et des contrôles grille dans le concept de réseau intelligent pour les dernières décennies. Cet outil a évolué pour répondre aux questions proposées par les chercheurs et les ingénieurs dans les applications de l'industrie, et pour offrant des différentes alternatives pour couvrir plusieurs scénarios réalistes.Aujourd'hui, en raison des progrès récents dans le matériel informatique, la Simulation numérique en temps réel (DRTS) est utilisée pour concevoir des systèmes de puissance, afin de soutenir les décisions prises dans les systèmes de gestion de l'énergie automatisés (SME) et de réduire le délai de commercialisation de produits, entre des autres applications.Les simulations de réseaux électriques peuvent être classées dans les catégories suivantes: (1) la simulation analogique (2) hors simulation de ligne (3) de simulation entièrement numérique (4) la simulation rapide (5) Contrôleur Hardware-In-the-Loop (CHIL) et (6) Puissance Hardware-In-the-Loop (PHIL).Les dernière 3 sont axés sur la simulation Real-Time hardware-in-the-Loop (HIL RT-). Ces catégories portent sur les questions liées à Transitoires électromagnétiques (liste EMT), la simulation de phaseurs ou mixte (phaseur et EMT). Comme mentionné ci-dessus, ces progrès sont possibles en raison de l'évolution des architectures informatiques (matériels et logiciels); Cependant, pour le cas particulier de l'analyse des flux de puissance des réseaux de distribution (DS), il y a encore des défis à résoudre.Les architectures informatiques actuelles sont composées de plusieurs noyaux, laissant derrière lui le paradigme de la programmation séquentielle et conduisant les développeurs de systèmes numériques pour examiner des concepts comme le parallélisme, la concurrence et les événements asynchrones. D'autre part, les méthodes pour résoudre le flux de puissance dynamique des systèmes de distribution considérer le système comme un seul bloc; ainsi, ils utilisent une seule base pour l'analyse des flux de puissance, indépendamment de l'existence de plusieurs cœurs disponibles pour améliorer les performances de la simulation.Répartis dans des procédés en phase et de la séquence, ces procédés ont en caractéristiques communes telles que l'examen d'une seule matrice creuse pour décrire les DS et qu'ils peuvent résoudre simultanément une seule fréquence.Ces caractéristiques font dès les méthodes mentionné sont pas appropriées pour le traitement avec multiple noyaux. En conséquence, les architectures informatiques actuelles sont sous-utilisés, et dégrade la performance des simulateurs lors de la manipulation de grandes DS échelle, changer DS topologie et y compris les modèles avancés, entre autres des activités de la vie réelle.Pour relever ces défis Cette thèse propose une approche appelée A-Diakoptics, qui combine la puissance de Diakoptics et le modèle de l'acteur; le but est de faire toute méthode classique d'analyse de flux d'énergie appropriée pour le traitement multithread. En conséquence, la nature et la complexité du système d'alimentation peuvent être modélisées sans affecter le temps de calcul, même si plusieurs parties du système d'alimentation fonctionnent à une fréquence de base différente comme dans le cas de micro-réseaux à courant continu. Par conséquent, l'analyse des flux de charge dynamique de DS peut être effectuée pour couvrir les besoins de simulation différents tels que la simulation hors ligne, simulation rapide, CHIL et PHIL. Cette méthode est une stratégie avancée pour simuler les systèmes de distribution à grande échelle dans des conditions déséquilibrées; couvrant les besoins de base pour la mise en œuvre d'applications de réseaux intelligents. / Simulation of power systems is an important tool for designing, developing and assessment of new grid architectures and controls within the smart grid concept for the last decades. This tool has evolved for answering the questions proposed by academic researchers and engineers in industry applications; providing different alternatives for covering several realistic scenarios. Nowadays, due to the recent advances in computing hardware, Digital Real-Time Simulation (DRTS) is used to design power systems, to support decisions made in automated Energy Management Systems (EMS) and to reduce the Time to Market of products, among other applications.Power system simulations can be classified in the following categories: (1) Analog simulation (2) off line simulation (3) Fully digital simulation (4) Fast simulation (5) Controller Hardware-In-the-Loop (CHIL) simulation and (6) Power Hardware-In-the-Loop (PHIL) simulation. The latest 3 are focused on Real-Time Hardware-In-the-Loop (RT-HIL) simulation. These categories cover issues related to Electromagnetic Transients (EMT), phasor simulation or mixed (phasor and EMT). As mentioned above, these advances are possible due to the evolution of computing architectures (hardware and software); however, for the particular case of power flow analysis of Distribution Systems (DS) there are still challenges to be solved.The current computing architectures are composed by several cores, leaving behind the paradigm of the sequential programing and leading the digital system developers to consider concepts such as parallelism, concurrency and asynchronous events. On the other hand, the methods for solving the dynamic power flow of distribution systems consider the system as a single block; thus they only use a single core for power flow analysis, regardless of the existence of multiple cores available for improving the simulation performance.Divided into phase and sequence frame methods, these methods have in common features such as considering a single sparse matrix for describing the DS and that they can solve a single frequency simultaneously. These features make of the mentioned methods non-suitable for multithread processing. As a consequence, current computer architectures are sub-used, affecting simulator's performance when handling large scale DS, changing DS topology and including advanced models, among others real life activities.To address these challenges this thesis proposes an approach called A-Diakoptics, which combines the power of Diakoptics and the Actor model; the aim is to make any conventional power flow analysis method suitable for multithread processing. As a result, the nature and complexity of the power system can be modeled without affecting the computing time, even if several parts of the power system operate at different base frequency as in the case of DC microgrids. Therefore, the dynamic load flow analysis of DS can be performed for covering different simulation needs such as off-line simulation, fast simulation, CHIL and PHIL. This method is an advanced strategy for simulating large-scale distribution systems in unbalanced conditions; covering the basic needs for the implementation of smart grid applications.

Identiferoai:union.ndltd.org:theses.fr/2015GREAT106
Date19 November 2015
CreatorsMontenegro Martinez, Davis
ContributorsGrenoble Alpes, Universidad de los Andes (Bogotá), Bacha, Seddik, Ramos Lopez, Gustavo Andrés
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds