Computermodelle stellen heute ein Standardwerkzeug in vielen wissenschaftlichen Disziplinen dar. Einer ihrer Hauptzwecke ist die Verknüpfung von Prozessen verschiedener Skalen. Verzichtet man auf diese Verknüpfung im Modell, sind realistische Prognosen meist ausgeschlossen, bildet man die Realität 1:1 nach, wird das Modell unlösbar. Wichtig ist daher eine gute Balance zwischen Genauigkeit und Abstraktion. Ich untersuche Möglichkeiten, skalenübergreifende Interaktionen in der Landnutzungsmodellierung effizient zu implementieren. Fokus liegt dabei auf zwei Prozessen: 1.Der Nutzung hochaufgelöster Daten im Modell. 2.Dem technologischer Wandel als landwirtschaftlichem Treiber. Häufig können hochaufgelöste Daten augrund limitierter Modellkomplexität nicht direkt verwendet werden. Meist wird dieses Problem gelöst, indem die Daten nach einem statischen Aggregationsschema hochskaliert werden. Als Alternative diskutiere ich den Einsatz von Clusteralgorithmen. Meine Untersuchungen zeigen, dass der entstehende Informationsverlust bei Verwendung von Clusteralgorithmen signifikant geringer ist als bei der Verwendung statischer Aggregationsvorschriften. Ein weiterer in der Landwirtschaft wichtiger Prozess ist technologischer Wandel. Während in der Vergangenheit Steigerungen in der Produktion meist durch Landexpansion erreicht wurden, so geschieht dies heute häufig durch Intensivierung. Ich präsentiere eine Modellimplementierung dieses Prozesses mitsamt der Rückkopplung der Landnutzungsintensität auf die Effektivität zugehöriger Investitionen. Grundlage dafür ist ein neuentwickeltes Maß für landwirtschaftliche Landnutungsintensität. Damit zeige ich, dass die Effektivität von Investitionen mit steigender Landnutzungsintensität sinkt. Meine Arbeit zeigt, dass außer dem Detailgrad eines Modells auch die Struktur der verwendeten Implementierungen einen signifikanten Einfluss auf die generelle Qualität der Simulation hat und insgesamt mehr Beachtung in der Modellierung finden sollte. / Computer models have become a common tool in various disciplines. A major challenge in modeling is the linking of processes on different scales. Neglecting cross-scale interactions leads to biases in model projections while a 1:1 representation is computational infeasible. Therefore, a good balance between accuracy and abstraction is essential. I investigate efficient implementations of cross-scale interactions in agricultural land-use models. I focus on two dominant aspects: First, the inclusion of spatially explicit data in a global optimization model; second, the proper representation of technological change as a driver for land use change. As a consequence of limitations in complexity of global optimization models the problem arises that high-resolution data cannot be used directly as model input. Typically, the spatially explicit data is upscaled by using a static upscaling rule. As an alternative I discuss the use of clustering methods for upscaling. I provide a general framework including the creation of clusters, the upscaling of inputs, and the downscaling of outputs. My investigations show that the information loss due to upscaling decreases significantly with cluster methods compared to static grids. Another important process in agriculture is technological change. Whereas in the past increases in agricultural production were mainly achieved by agricultural land expansion, nowadays most increases in total production are outcome of intensification due to technological change. To model this feedback I introduce a measure for agricultural land-use intensity. Based on this measure I show that the effectiveness of investments in technological change decreases with the agricultural land-use intensity. My findings imply that apart from detailedness especially the implementation has a significant impact on general model quality. Therefore, in model development the framework used for implementation should be emphasized to a greater extent.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17047 |
Date | 01 November 2011 |
Creators | Dietrich, Jan Philipp |
Contributors | Kurths, Jürgen, Held, Hermann, Erb, Karlheinz |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-nc-sa/3.0/de/ |
Page generated in 0.0024 seconds