Dans de nombreuses applications industrielles, les structures en vibration à dimensionner sont en contact avec un fluide (fluide autour des coques des bateaux, réservoirs, échangeurs de chaleur dans les centrales, l’industrie automobile, etc). Cependant, le comportement dynamique de la structure peut être modifié de façon importante par la présence du fluide. Le dimensionnement doit donc prendre en compte les effets de l’interaction fluide-structure.Ces applications nécessitent un couplage efficace. En outre, l’analyse dynamique des systèmes industriels est souvent coûteuse du point de vue numérique. Pour les modèles éléments finis des problèmes couplés fluide-structure, l’importance de la réduction de la taille devient évidente car les degrés de liberté du fluide seront ajoutés à ceux de la structure. Des méthodes de réduction du modèle seront utilisées pour réduire la taille des matrices obtenues.Traditionnellement, l’étude de ces systèmes couplés est fondée sur une démarche déterministe dans laquelle l’ensemble des paramètres utilisés dans le modèle prennent une valeur fixe.Par contre, il suffit d’avoir procédé à quelques expérimentations pour se rendre compte des limites d’une telle modélisation, d’où la nécessité de la prise en compte des incertitudes sur les paramètres du système couplé.Ce travail de thèse s’articule autour de trois études principales. La première consiste à mener une étude déterministe numérique et analytique des problèmes vibro-acoustiques sans réduction de modèles. Cette dernière est basée sur une formulation non symétrique déplacement/pression et une formulation symétrique déplacement/pression et potentiel des vitesses. Dans la deuxième étude, on propose deux méthodes de réduction du modèle : analyse et synthèse modales pour la résolution des problèmes vibro-acoustiques des grandes tailles des systèmes couplés modélisés par la méthode des éléments finis. La méthode de synthèse modale développée couple une méthode de sous-structuration dynamique de type Craig et Bampton et une méthode de sous domaines acoustiques.Enfin, pour tenir compte des incertitudes sur les paramètres du système couplé, on a développé dans la troisième étude une méthode numérique stochastique de synthèse modale étendue à une étude de fiabilité basée sur les approches FORM et SORM pour la résolution de ces problèmes. Ces démarches vont nous permettre de résoudre les problèmes vibro-acoustiques, sans utiliser les méthodes classiques, qui consistent à faire un calcul modal direct allié à la simulation de Monte Carlo demandant un coup de temps très élevé.Plusieurs exemples académiques et industriels ont été traités pour valider les approches proposées.L’étude numérique est conduite en utilisant un code élaboré sous MATLAB couplé au code commercial ANSYS afin d’évaluer la fiabilité du système couplé. La confrontation des résultats numériques, analytiques et expérimentaux nous permet de valider conjointement le processus de calcul et les méthodes proposées dans le domaine de l’analyse fréquentielle et l’étude fiabiliste des structures immergées. D’un point de vue industriel, ces méthodes visent à promouvoir l’introduction de la culture de l’incertain dans les métiers de la conception et encouragent la construction d’un modèle fiable et robuste pour les problèmes d’interaction fluide-structure. / In several industrial applications, the vibrating structures are in contact with a fluid (fluid around the hulls of a boats, reservoirs, heat exchangers in power plants, ...), but the dynamic behavior of the structure can be significantly modified by the presence of the fluid. The sizing must take into account the effects of fluid-structure interaction. These applications require an effective coupling. In addition, the dynamic analysis of the industrial systems is often expensive from the numerical point of view. For the coupling fluid structure finite elements models, the importance of the size reduction becomes obvious because the fluid’s freedom degrees will be added to those of the structure. A proposed condensation method will be used to reduce the matrixes size. Traditionally, the study of the fluid-structure interaction is based on a deterministic approach where all the parameters used in the model have a fixed value. But it suffices having conducted a few experimentations to realize the limitations of such modeling. Hence it need to take into accounts the uncertainty on the parameters of mechanical systems. In this thesis, we deal with the simulation of vibro-acoustic problems. The first part presents a numerical and analytical study of deterministic problems without model’s reduction, based on a non-symmetric formulation displacement/pressure and on a symmetric formulation displacement/pressure and velocity potential. In the second part of this work, two methods are proposed to reduce the model : modal analysis and modal synthesis for solving vibro-acoustic problems of large sizes modeled by finite elements method. The developed modal synthesis method is coupling dynamic substructure of Craig and Bampton type and acoustic subdomain based on a pressure formulation. To take into account the parameter’s uncertainties of the coupled system, we have developed a numerical stochastic method of the modal synthesis and modal analysis extended to reliability study, based on the FORM and SORM approaches. These approaches will allow us to solve the vibro-acoustic problems without using classical procedure. It may become prohibitive in terms of computation time. Several academic and industrial examples are studied to validate the proposed methods. The numerical study is performed using a code developed with MATLAB coupled with the commercial code ANSYS in order to evaluate the reliability of systems. The comparison of numerical, analytical and experimental results enables us to jointly validate the calculation process and the proposed methods in the domain of frequency analysis and reliability study of submerged structures. From the industrial point of view, our research work aim is to promote the introduction of the uncertainty’s culture during modeling in the context of design processes.
Identifer | oai:union.ndltd.org:theses.fr/2013ISAM0011 |
Date | 22 April 2013 |
Creators | Mansouri, Mohamed |
Contributors | Rouen, INSA, Université Hassan Ier (Settat, Maroc), El Hami, Abdelkhalak, Radi, Bouchaïb |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0037 seconds