[pt] À medida que os modelos de aprendizado de máquina penetram áreas críticas como medicina, sistema de justiça criminal e mercados financeiros, sua opacidade, que impede que as pessoas interpretem a maioria deles, se tornou um problema a ser resolvido. Neste trabalho, apresentamos uma nova taxonomia para classificar qualquer método, abordagem ou estratégia para lidar com o problema da interpretabilidade de modelos de aprendizado de máquina. A taxonomia proposta que preenche uma lacuna existente nas estruturas de taxonomia atuais em relação à percepção subjetiva de diferentes intérpretes sobre um mesmo modelo. Para avaliar a taxonomia proposta, classificamos as contribuições de artigos científicos relevantes da área. / [en] As machine learning models penetrate critical areas like medicine, the criminal justice system, and financial markets, their opacity, which hampers humans ability to interpret most of them, has become a problem to be solved. In this work, we present a new taxonomy to classify any method, approach or strategy to deal with the problem of interpretability of machine learning models. The proposed taxonomy fills a gap in the current taxonomy frameworks regarding the subjective perception of different interpreters about the same model. To evaluate the proposed taxonomy, we have classified the contributions of some relevant scientific articles in the area.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:42398 |
Date | 29 July 2019 |
Creators | JORGE LUIZ CATALDO FALBO SANTO |
Contributors | SIMONE DINIZ JUNQUEIRA BARBOSA |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.0022 seconds