Die vorliegende Arbeit beschaeftigt sich mit Gleichgewichtsproblemen unter Gleichgewichtsrestriktionen, sogenannten EPECs (Englisch: Equilibrium Problems with Equilibrium Constraints). Konkret handelt es sich um gekoppelte Zwei-Ebenen-Optimierungsprobleme, bei denen Nash- Gleichgewichte fuer die Entscheidungen der oberen Ebene gesucht sind. Ein Ziel der Arbeit besteht in der Formulierung dualer Stationaritaetsbedingungen zu solchen Problemen. Als Anwendung wird ein oligopolistisches Wettbewerbsmodell fuer Strommaerkte betrachtet. Zur Gewinnung qualitativer Hypothesen ueber die Struktur der betrachteten Modelle (z.B. Inaktivitaet bestimmter Marktteilnehmer) aber auch fuer moegliche numerische Zugaenge ist es wesentlich, EPEC-Loesungen explizit bezueglich der Eingangsdaten des Problems zu formulieren. Der Weg dorthin erfordert eine Strukturanalyse der involvierten Optimierungsprobleme (constraint qualifications, Regularitaet), die Herleitung von Stabilitaetsresultaten bestimmter mengenwertiger Abbildungen und die Nutzung von Transformationsformeln fuer die sogenannte Ko-Ableitung. Weitere Schwerpunkte befassen sich mit der Beziehung zwischen verschiedenen dualen Stationaritaetstypen (S- und M-Stationaritaet) sowie mit stochastischen Erweiterungen der betrachteten Problemklasse, sogenannten SEPECs. / This thesis is concerned with equilibrium problems with equilibrium constraints or EPECs. Concretely, we consider models composed by coupling together two-level optimization problems, the upper-level solutions to which are non-cooperative (Nash-Cournot) equilibria. One of the main goals of the thesis involves the formulation of dual stationarity conditions to EPECs. A model of oligopolistic competition for electricity markets is considered as an application. In order to profit from qualitative hypotheses concerning the structure of the considered models, e.g., inactivity of certain market participants at equilibrium, as well as to provide conditions useful for numerical procedures, the ablilty to formulate EPEC solutions in relation to the input data of the problem is of considerable importance. The way to do this requires a structural analysis of the involved optimization problems, e.g., constraints qualifications, regularity; the derivation of stability results for certain multivalued mappings, and the usage of transformation formulae for so-called coderivatives. Further important topics address the relationship between various dual stationarity types, e.g., S- and M-stationarity, as well as the extension of the considered problem classes to a stochastic setting, i.e., stochastic EPECs or SEPECs.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16739 |
Date | 19 March 2010 |
Creators | Surowiec, Thomas Michael |
Contributors | Henrion, René, Römisch, Werner, Outrata, Jiri V. |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0023 seconds