Ziel dieser Dissertation ist es, mithilfe zweier Herangehensweisen, das Verständnis der Zusammenhänge verschiedener physikalischer Prozesse des Klimasystems zu verbessern.
Im ersten Teil verwende ich Klimanetzwerke zu die gemeinsame Abhängigkeit von Meeresoberflächentemperaturen (SSTs) und Niederschlägen in Hinsicht auf globale charakteristiken und räumlichen Muster untersuchen. In diesem Kontext ist die El Niño Southern Oscillation (ENSO) das wichtigste Phänomen, welches großskalig SSTs und Niederschläge beeinflusst. Durch meine Analyse decke ich kurz und weitreichende Verbindungen auf und zeige deren Abhängigkeit von der jeweiligen ENSO-Phase (El Nino, La Nina, neutrale Phase). Darüber hinaus werden durch die Kombination einer diskreten Wavelet-Transformation mit dem Konzept der gekoppelten Klimanetzwerkanalyse die skalenspezifischen Verbindungen aufgelöst, die bei der ursprünglichen Auflösung der Daten oft übersehen werden.
Im zweiten Teil der Arbeit verwende ich Simulationen des COnsortium for Small scale MOdeling (COSMO) Climate Limited-area Modell (CCLM) und untersuche die Auswirkungen des Sobradinho-Stausees.
In dieser Arbeit benutzen ich das Flake Modell, um das vertikale Temperaturprofil des Sees zu bestimmen. Durch die Einbettung des Flake Modells in das CCLM konnte ich den Sobradinho-Stausee untersuchen. Dabei simuliere ich zwei verschiedene Szenarien. Die Simulationsergebnisse verifiziere ich mithilfe meteorologischer Daten von Oberflächen- und Satellitenmessungen. Die Ergebnisse zeigen, dass der See sowohl die bodennahe Temperatur als auch Wind- und Luftfeuchtigkeitsmuster der Umgebung beeinflusst. Zudem wird die Luftfeuchtigkeit durch den See erhöht und bewirkt Seewinde. Die Effekte des Sees auf die Luftfeuchtigkeit und temperaturen beschränken sich nicht nur auf die Nähe des Sees, sondern auch auf relativ weit entfernte Gebiete. / This dissertation aims at improving our understanding of the mechanisms of interactions between physical processes within the climate system via two different approaches.
In the first part, I have utilized climate networks to understand the mutual interdependence between sea surface temperatures (SST) and precipitation (PCP) in terms of global characteristics and spatial patterns. In this context, the globally most relevant phenomenon is the El Niño Southern Oscillation (ENSO), which strongly affects large-scale SST variability as well as PCP patterns all around the globe. My analysis uncovers both local and remote statistical connections and demonstrates their dependence on the current ENSO phase (El Niño, La Niña or neutral phase). Furthermore by combining time-scale decomposition by means of a discrete wavelet transform with the concept of coupled climate network analysis unravel the scale-specific connections that are often overlooked at the original resolution of the data.
In the second part of this thesis, I have focused on simulations with the COnsortium for Small scale MOdeling (COSMO) Climate Limited-area Model (CCLM) and investigate the effects of Lake Sobradinho, a large reservoir in Northeastern Brazil, on the local near-surface atmospheric and boundary layer conditions. In this thesis, the FLake model (Freshwater Lake model) is applied for obtaining the lake’s vertical temperature profile. I have simulated two alternative scenarios. The performance of the simulation is compared with data from surface meteorological stations as well as satellite data. The obtained results demonstrate that the lake affects the near-surface air temperature of the surrounding area as well as its humidity and wind patterns. Moreover, the humidity is significantly increased as a result of the lake’s presence and causes a lake breeze. The observed effects on humidity and air temperature also extend over areas relatively far away from
the lake.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/21325 |
Date | 10 October 2019 |
Creators | Ekhtiari, Nikoo |
Contributors | Kurths, Jürgen, Calheiros, Samia, Coumou, Dim |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY 3.0 DE) Namensnennung 3.0 Deutschland, http://creativecommons.org/licenses/by/3.0/de/ |
Page generated in 0.0104 seconds