Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-06-01T11:43:57Z
No. of bitstreams: 1
2015 - T?rcio de Sampaio Triani.pdf: 2326230 bytes, checksum: 297ea4ee1d9f2251260ab1c73fb44502 (MD5) / Made available in DSpace on 2017-06-01T11:43:57Z (GMT). No. of bitstreams: 1
2015 - T?rcio de Sampaio Triani.pdf: 2326230 bytes, checksum: 297ea4ee1d9f2251260ab1c73fb44502 (MD5)
Previous issue date: 2015-06-22 / The study of soil water dynamics has been growing across the need to optimize
the use of water resources for the maintenance of agricultural productivity. In
order to assist this study, different models of soil water dynamics has been
created and studied in an attempt to predict situations that empirically become
time-consuming and expensive. The soil water dynamics is directly associated
with physical and hydric parameters, as well as the soil moisture. To determine
the soil moisture, there are techniques that require a large amount of samples,
increasing the cost and time required to perform such measurements.This work
continues the dissertation of Belleza. A model based on fuzzy rules to estimate
the moisture in topsoil from soil texture data, matric potential and amount of
organic matter is elaborated. The distinction and analysis made by the model
fall under the influence of organic matter on the soil water retention,
disregarded by most studies of this type. The data set used for training and
validation of the model comes from a research project conducted in the
Amazon region, organized in a report funded by Petrobras. The results,
obtained by simulation performed in the software Matlab, show that the
organic matter has great influence in soil water retention of soils which clay
content is under 35%. A significant decrease of total mean error in relation
with the work of Belleza, which ignores the influence of organic matter, is
observed. The increase in the number of the fuzzy inference system rules also
allow a better approximation of the estimated values to the real moisture
values. Taking into account the uncertainties inherent to the phenomenon this
model is considered appropriate, due to its simplicity and relatively low
average of errors, and an evolution in the field of modeling the soil moisture
estimation by fuzzy logic. / O estudo da din?mica da ?gua no solo tem sido crescente frente ? necessidade
de otimiza??o de uso de recursos h?dricos para a manuten??o da produtividade
agr?cola. Como forma de auxiliar esse estudo, diferentes modelos de din?mica
da ?gua no solo t?m sido criados e estudados, em uma tentativa de se prever
situa??es que empiricamente se tornam demoradas e custosas. A din?mica da
?gua no solo est? associada diretamente a par?metros f?sico-h?dricos do solo,
assim como a umidade do solo. Para se determinar a umidade do solo existem
t?cnicas que necessitam de uma grande quantidade de amostragens, elevando o
custo e o tempo necess?rio para realizar tais medi??es. Este trabalho d?
continuidade ? disserta??o de Belleza. ? elaborado um modelo baseado em
regras fuzzy para estimar a umidade em camadas superficiais do solo a partir de
dados de textura do solo, potencial matricial e quantidade de mat?ria org?nica.
A distin??o e an?lise feitos pelo modelo recaem sobre a influ?ncia da mat?ria
org?nica sobre a reten??o de umidade pelo solo, desconsiderada pela maioria
dos trabalhos deste tipo. O conjunto de dados utilizado para treinamento e
valida??o do modelo ? proveniente de um projeto de pesquisa realizado na
regi?o amaz?nica, organizado em relat?rio financiado pela Petrobras. Os
resultados, obtidos atrav?s de simula??o realizada no software Matlab,
demonstram que a mat?ria org?nica possui grande influ?ncia na reten??o de
umidade por solos cujo teor de argila esteja abaixo de 35%. ? observada uma
redu??o significativa do erro absoluto m?dio total em rela??o ao trabalho de
Belleza, que desconsidera a influ?ncia da mat?ria org?nica. O aumento do
n?mero de regras do sistema de infer?ncia fuzzy permite tamb?m uma melhor
aproxima??o das estimativas do valor real de umidade. Levando em conta as
incertezas inerentes ao fen?meno este modelo ? considerado adequado devido
a sua simplicidade e m?dia de erros relativamente baixa, e uma evolu??o no
campo da modelagem da estimativa de umidade do solo por l?gica fuzzy.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/1723 |
Date | 22 June 2015 |
Creators | Triani, T?rcio de Sampaio |
Contributors | Ceddia, Marcos Bacis, Oliveira, Rosane Ferreira de, vellasco, Marley Maria Bernardes Rebuzzi, Dias, Claudia Mazza |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Modelagem Matem?tica e Computacional, UFRRJ, Brasil, Instituto de Ci?ncias Exatas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | Refer?ncias AFONSO, A. C. M.; NETTO, A. M.; VASCONCELOS, W. E. de. Fuzzy logic applied to the modeling of water dynamics in an oxisol in northeastern Brazil. Revista Brasileira de Ci?ncia do Solo, v. 38, n. 2, p. 454-463, Vi?osa, 2014. AG?NCIA BRASIL. Desperd?cio de ?gua no Brasil chega a 40%. O GLOBO, Bras?lia, 24 abr. 2007. Dispon?vel em: <http://oglobo.globo.com/sociedade/ciencia/desperdicio-de-aguano- brasil-chega-40-4193297>. Acesso em: 29 dez. 2014. AG?NCIA NACIONAL DE ?GUAS. Conjuntura dos recursos h?dricos no Brasil: informe 2013. Bras?lia, ANA, 2013. AMENDOLA, M.; SOUZA, A. L.; BARROS, L. C. Manual do uso da teoria dos conjuntos fuzzy no Matlab 6.5. Campinas: CPG/FEAGRI/UNICAMP, 2005. ASSOULINE, S.; TESSIER, D.; BRUAND, A. A conceptual model of the soil water retention curve. Water Resources Research, v. 34, n. 2, p. 223-231, 1998. B?RDOSSY, A.; DISSE, M. Fuzzy rule-based models for infiltration. Water Resources Research, v. 29, n. 2, p. 373-382, 1993. BARROS, L. C. de. Sobre sistemas din?micos fuzzy - Teoria e Aplica??es. 1997. Tese (Doutorado). Universidade Estadual de Campinas, Instituto de Matem?tica, Estat?stica e Computa??o Cient?fica, Campinas, 1997. BARROS, L. C. de; BASSANEZI, R. C. T?picos de l?gica fuzzy e biomatem?tica. 2. ed. S?o Paulo: Unicamp/IMMEC, 2010. BAYER, C.; MIELNICZUK, J. Din?mica e fun??o da mat?ria org?nica. In: SANTOS, G.A.; CAMARGO, F.A.O.; SILVA, L. S.; CANELLAS, L. P. (Ed.). Fundamentos da mat?ria org?nica do solo: ecossistemas tropicas e subtropicais. 2. ed. Porto Alegre: Metr?pole, 2008. BELLEZA, M. P. Modelagem fuzzy aplicada ? estimativa da umidade do solo da Forma??o Solim?es - AM. 2014. Disserta??o (Mestrado em Modelagem Matem?tica e Computacional) - Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2014. BIASSUSI, M. Simula??o do movimento da ?gua no solo utilizando modelo num?rico. 2001. Tese (Doutorado) - Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2001. BRAIDA, J. A. Mat?ria org?nica e res?duos vegetais na superf?cie do solo e suas rela??es com o comportamento mec?nico do solo sob plantio direto. 2004. Tese (Doutorado em Ci?ncia do Solo) - Universidade Federal de Santa Maria, Santa Maria, 2004. 66 BRAIDA, J. A.; BAYER, C.; ALBUQUERQUE, J.; REICHERT, J. Mat?ria org?nica e seu efeito na f?sica do solo. T?picos em ci?ncia do solo, v. 7, p. 221-278, Vi?osa, 2011. CANCINO CALLE, J. A. An?lise de ruptura de talude em solo n?o saturado. 2000. Disserta??o (Mestrado em Geotecnia) - Escola de Engenharia de S?o Carlos, Universidade de S?o Paulo, S?o Carlos, 2000. CEDDIA, M. B. F?sica do solo. Material de apoio da disciplina de F?sica do solo do curso de p?s-gradua??o em Ci?ncia do Solo, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2013. CELIA, M. A.; BOULOUTAS, E. F.; ZARBA, R. L. A general mass-conservative numerical solution for the unsaturated flow equation. Water Resources Research, v. 26, n.7, p. 1483- 1496, 1990. CICHOTA, R.; VAN LIER, Q. de J. An?lise da variabilidade espacial de pontos amostrais da curva de reten??o da ?gua no solo. Revista Brasileira de Ci?ncia do Solo, v. 28, n. 4, p. 585-596, 2004. COSTA, E. M.; SILVA, H. F; RIBEIRO, P. R. de A. Mat?ria org?nica do solo e o seu papel na manuten??o e produtividade dos sistemas agr?colas. Enciclop?dia Biosfera, Centro Cient?fico Conhecer - Goi?nia, v.9, n. 17, 2013. DA SILVA, E. M.; LIMA, J. E. F. W; AZEVEDO, J. A; RODRIGUES, L. N. Valores de tens?o na determina??o da curva de reten??o de ?gua de solos do Cerrado. Pesq. agropec. bras., Bras?lia, v. 41, n. 2, p. 323-330, 2006. EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Sistema Brasileiro de Classifica??o de Solos. 2. ed. Rio de Janeiro: Embrapa-SPI, 2006. FAVORETTO, C. M. Caracteriza??o da mat?ria org?nica humificada de um latossolo vermelho distr?fico atrav?s da espectroscopia de fluoresc?ncia induzida a laser. Disserta??o (Mestrado em Qu?mica Aplicada) - Universidade Estadual de Ponta Grossa, Ponta Grossa, 2007. GARDNER, W. H. Water content. In: KLUTE, A.Methods of soil analysis. Part 1. Physical and mineralogical methods, 2. ed. Madison, Soil Science Society of America, Inc., 1986. HALKIDIS, I. N.; TZIMOPOULOS, C.; EVANGELIDES, C.; SAKKELARIOYMAKRANTONAKI, M. Soil water management problem using fuzzy arithmetic. Global NEST J, v. 11, n. 4, p. 556-565, 2009. HILLEL, D. Environmental soil physics: Fundamentals, applications, and environmental considerations. Academic press, 1998. IBGE (Instituto Brasileiro de Geografia e Estat?stica). Manual T?cnico de Pedologia. Manuais T?cnicos em Geoci?ncias, n. 4, 2. ed., 2007. KLUTE, A.; DIRKSEN, C. Hydraulic conductivity and diffusivity: Laboratory methods. In: KLUTE, A. Methods of soil Analysis. 2. ed. Madison, American Society of Agronomy, Inc., 1986. 67 KOSKO, B. Fuzziness vs. probability. International Journal of General System, v. 17, p. 211-240, 1990. LEPSCH, I. F. Forma??o e conserva??o dos solos. 2. ed. Oficina de textos, S?o Paulo: 2010. LIBARDI, P. L. Din?mica da ?gua no Solo. S?o Paulo: Edusp, 2005. LIBARDI, P. L. ?gua no solo. Notas de aula ministrada em 2014. ESALQ/USP. Dispon?vel em: <http://www.leb.esalq.usp.br/aulas/lce200/Agua_no_Solo_2014.pdf>. Acesso em: 20/12/2014. LIMA, F. M. C. de; SILVA, S. A. da; FILGUEIRA, H. J. A.; GOMES, H. P. Controle do potencial matricial da ?gua no solo por meio de l?gica fuzzy. Irriga, v. 15, n. 4, p. 431-442, 2010. MANICH, M.; GUETTER, A. K. Solu??o anal?tica da equa??o de Richards. Revista Brasileira de Recursos H?dricos, v. 16, n.1, p. 47-54, 2011. MCBRATNEY, A. B.; ODEH, I. O. A. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma, v. 77, n. 2, p. 85-113, 1997. MEURER, E.J.; RHENHEIMER, D.; BISSANI, C.A. Fen?menos de superf?cie. In: Meurer, E.J. (Ed.) Fundamentos de qu?mica do solo. Porto Alegre: Genesis, 2000. MUALEM, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, v. 12, n. 3, p. 513-522, 1976. ORTEGA, N. R. S. Aplica??o da teoria de conjuntos fuzzy a problemas da biomedicina. Tese (Doutorado) - Instituto de F?sica, Faculdade de S?o Paulo, S?o Paulo, 2001. OTTONI, M. V. Avalia??o do ajuste da curva de reten??o de ?gua dos solos a partir de tr?s umidades representativas. Anais do XVIII Simp?sio Brasileiro de Recursos H?dricos, Associa??o Brasileira de Recursos H?dricos, Campo Grande, p. 22-26, 2009. PEDRYCZ, W. Why triangular membership functions?. Fuzzy sets and Systems, v. 64, n. 1, p. 21-30, 1994. PETROBRAS SA. Relat?rio final do levantamento detalhado de solos da Base Petrol?fera Ge?logo Pedro de Moura (BOGPM), Coari - AM. Projeto Petrossolos Amaz?nicos (Conv?nio PETROBRAS/UFRRJ/FAPUR, No45/08). Coordenador: Marcos Bacis Ceddia. 642p. 2010. RAWLS,W. J.; NEMES, A.; PACHEPSKY, Y. Effect of soil organic carbon on soil hydraulic properties. Developments on Soil Science, n. 30, cap. 6, 2004. RAWLS, W. J.; PACHEPSKY, Y. A.; SOBECKI, T.; BLOODWORTH, H. Effect of soil organic carbon on soil water retention. Geoderma, v. 116, n. 1, p. 61-76, 2003. REICHARDT, K.; TIMM, L. C. Solo, planta e atmosfera: conceitos, processos e aplica??es. Manole, 2004. ROSSI, C.; NIMMO, J. R. Modeling of soil water retention from saturation to oven dryness. Water Resources Research, v. 30, n. 3, p. 701-708, 1994. 68 SANTOS, R. D. dos; LEMOS, R. C.; SANTOS, H. G. dos; KER, J. C.; ANJOS, L. H. C. dos. Manual de descri??o e coleta de solo no campo. 5 ed. Sociedade Brasileira de Ci?ncia de Solo, Vi?osa, 2005. SOMMERFELDT, T. G.; CHANG. C. Soil-water properties as affected by twelve annual applications of cattle feedlot manure. Soil Sci. Soc. Am. J., 49:7-9. 1986. SOUZA, A. L. Teoria de conjuntos fuzzy no estudo da din?mica da ?gua e de solutos no solo. 2007. 157 f. 2007. Tese (Doutorado) - Faculdade de Engenharia Agr?cola, Universidade Estadual de Campinas, Campinas, 2007. TAVARES, M. H. F.; FELICIANO, J. J. S.; VAZ, C.M.P. An?lise comparativa de m?todos para determina??o da curva de reten??o de ?gua em solos. In: XXXI Congresso Brasileiro de Ci?ncia do Solo, Gramado, 2007. TZIMOPOULOS, C; TSAOUSIS, A; EVANGELIDES, C; SAKELLARIOU, M. Fuzzy analysis of infiltration problem. In: Agricultural and biosystems engineering for a sustainable world. International Conference on Agricultural Engineering, Hersonissos, Gr?cia, 2008. European Society of Agricultural Engineers, 2008. VAN GENUCHTEN, M. Th. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, v. 44, n. 5, p. 892-898, 1980. WANG, L. X.; MENDEL, J. M. Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man and Cybernetics, v. 22, n. 6, p. 1414-1427, 1992. ZADEH, L. A. Fuzzy sets. Information and control, v. 8, n. 3, p. 338-353, 1965. |
Page generated in 0.0038 seconds