Return to search

Méthode de Dandelin-Graeffe et méthode de Baker

L'objet général de ce travail est l'étude de la convergence des méthodes classiques<br />de calcul approché des racines d'un polynôme à coefficients complexes. Les méthodes<br />considérées sont celles de Bernoulli et de Graeffe-Dandelin. On montre que ces <br />questions de convergence sont liées à des problèmes diophantiens et que les<br />théorèmes d'aapproximation de Dirichlet et surtout la méthode de Baker fournissent<br />des résultats de convergence nouveaux qui s'appliquent aux polynômes à coefficients<br />entiers. De nombreux exemples calculés en MAPLE, y sont présentés et analysés.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00151313
Date12 June 2007
CreatorsDiouf, Ismaïla
PublisherUniversité Louis Pasteur - Strasbourg I
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds