Spelling suggestions: "subject:"méthode dde maker"" "subject:"méthode dde saker""
1 |
Mesure d'indépendance linéaire de logarithmes dans un groupe algébrique commutatifGaudron, Eric 08 December 2001 (has links) (PDF)
Cette thèse s'inscrit dans la lignée des travaux relatifs à la théorie des formes linéaires de logarithmes. Elle comporte deux parties ainsi que trois annexes. Dans la première partie, nous nous intéressons au cas général d'un groupe algébrique commutatif quelconque, défini sur la clôture algébrique de Q. Étant donné un tel groupe G, un hyperplan W de l'espace tangent à l'origine de G et $u$ un point complexe de cet espace tangent, dont l'image par l'exponentielle du groupe de Lie complexe G(C) est algébrique, nous obtenons une minoration de la distance de u à W, qui améliore les résultats connus auparavant et qui, en particulier, est optimale en la hauteur de l'hyperplan W. La démonstration repose sur la méthode de Baker ainsi que sur un nouvel argument de nature arithmétique (procédé de changement de variables de Chudnovsky) qui nous permet d'évaluer précisément les normes ultramétriques des nombres algébriques construits au cours de la preuve. Dans la seconde partie, nous étudions plus en détail le < non-homogène>> (dans lequel le groupe G est le produit direct du groupe $\mathbb{G}_{\mathrm{a}}$ et d'une variété abélienne) et nous établissons une nouvelle mesure, comparable à celle donnée dans la première partie mais totalement explicite en les invariants liés à la variété abélienne. La particularité de cette seconde partie est de mettre en oeuvre, pour la première fois dans ce contexte, la méthode des pentes de J.-B. Bost et certains résultats de géométrie d'Arakelov qui lui sont attachés.
|
2 |
Méthode de Dandelin-Graeffe et méthode de BakerDiouf, Ismaïla 12 June 2007 (has links) (PDF)
L'objet général de ce travail est l'étude de la convergence des méthodes classiques<br />de calcul approché des racines d'un polynôme à coefficients complexes. Les méthodes<br />considérées sont celles de Bernoulli et de Graeffe-Dandelin. On montre que ces <br />questions de convergence sont liées à des problèmes diophantiens et que les<br />théorèmes d'aapproximation de Dirichlet et surtout la méthode de Baker fournissent<br />des résultats de convergence nouveaux qui s'appliquent aux polynômes à coefficients<br />entiers. De nombreux exemples calculés en MAPLE, y sont présentés et analysés.
|
3 |
Problèmes autour de courbes élliptiques et modulairesSha, Min 27 September 2013 (has links) (PDF)
Cette thèse se divise en deux parties. La première est consacrée aux points entiers sur les courbes modulaires, et l'autre se concentre sur les courbes elliptiques à couplages.Dans la première partie, nous donnons quelques majorations effectives de la hauteur des j-invariants des points entiers sur les courbes modulaires quelconques associées aux sous-groupes de congruence sur les corps de nombres quelconques en supposant que le nombre des pointes est au moins 3. De plus, dans le cas d'un groupe de Cartan non-déployé nous fournissons de meilleures bornes. Comme application, nous obtenons des résultats similaires pour certaines courbes modulaires avec moins de 3 pointes.Dans la deuxième partie, nous donnons une nouvelle majoration du nombre de classes d'isogénie de courbes elliptiques ordinaires à couplages. Nous analysons également la méthode de Cocks-Pinch pour confirmer certaines de ses propriétés communément conjecturées. Par ailleurs, nous présentons la première analyse heuristique connue qui suggère que toute construction efficace de courbes elliptiques à couplages peut engendrer efficacement de telles courbes sur tout corps à couplages. Enfin, quelques données numériques allant dans ce sens sont données.
|
4 |
Aspects numériques de l’analyse diophantienneBajolet, Aurélien 07 December 2012 (has links)
Nous étudions ici deux problèmes diophantiens distincts. Le premier concerne les points entiers sur les courbes modulaires associées au normalisateur de sous-groupe de Cartan non déployé. Le deuxième concerne la recherche de point de multiplication complexe sur les droites. Dans les deux cas la méthode de résolution est algorithmique. On utilise la méthode de Baker sur les formes linéaires en logarithmes ainsi que des méthodes de réduction effectives. En particulier cette méthode permet d’obtenir les points entiers sur la courbe associée au normalisateur de sous-groupe de Cartan non déployé pour les niveaux compris entre 7 et 71. / We study here two diophantine problem. The first one deals with integral point on modular curves associated to normalizer of non-split Cartan subgroup. The second one is about finding singular moduli on straight line. In both cases, we solve theproblem in an algorithmic way. We use Baker’s method on linear form in logarithm and some effective technical of reduction. In particular this method gives integral points on the curve associated to normalizer of non-split Cartan subgroup for level between 7 and 71.
|
5 |
Problèmes autour de courbes élliptiques et modulaires / Topics in elliptic and modular curvesSha, Min 27 September 2013 (has links)
Cette thèse se divise en deux parties. La première est consacrée aux points entiers sur les courbes modulaires, et l'autre se concentre sur les courbes elliptiques à couplages.Dans la première partie, nous donnons quelques majorations effectives de la hauteur des j-invariants des points entiers sur les courbes modulaires quelconques associées aux sous-groupes de congruence sur les corps de nombres quelconques en supposant que le nombre des pointes est au moins 3. De plus, dans le cas d'un groupe de Cartan non-déployé nous fournissons de meilleures bornes. Comme application, nous obtenons des résultats similaires pour certaines courbes modulaires avec moins de 3 pointes.Dans la deuxième partie, nous donnons une nouvelle majoration du nombre de classes d'isogénie de courbes elliptiques ordinaires à couplages. Nous analysons également la méthode de Cocks-Pinch pour confirmer certaines de ses propriétés communément conjecturées. Par ailleurs, nous présentons la première analyse heuristique connue qui suggère que toute construction efficace de courbes elliptiques à couplages peut engendrer efficacement de telles courbes sur tout corps à couplages. Enfin, quelques données numériques allant dans ce sens sont données. / This thesis is divided into two parts. One is devoted to integral points on modular curves, and the other concerns pairing-friendly elliptic curves. In the first part, we give some effective upper bounds for the $j$-invariant of integral points on arbitrary modular curves corresponding to congruence subgroups over arbitrary number fields assuming that the number of cusps is not less than 3. Especially, in the non-split Cartan case we provide much better bounds. As an application, we get similar results for certain modular curves with less than three cusps. In the second part, a new heuristic upper bound for the number of isogeny classes of ordinary pairing-friendly elliptic curves is given. We also heuristically analyze the Cocks-Pinch method to confirm some of its general consensuses. Especially, we present the first known heuristic which suggests that any efficient construction of pairing-friendly elliptic curves can efficiently generate such curves over pairing-friendly fields. Finally, some numerical evidence is given.
|
6 |
Géométrie des nombres adélique et formes linéaires de logarithmes dans un groupe algébrique commutatifGaudron, Éric 01 December 2009 (has links) (PDF)
Voir le texte.
|
Page generated in 0.0536 seconds