Return to search

Localisation and Mapping for an Autonomous Lawn Mower : Implementation of localisation and mapping features for an autonomous lawn mower using heterogeneous sensors / Lokalisering och kartläggning för en autonom gräsklippare : Implementering av lokaliserings- och kartläggningsfunktioner för en autonom gräsklippare med heterogena sensorer

Autonomous lawn mowers have been available to consumers for more than 20 years. During this period, advancements in embedded device computations and sensor performance have led to improvements in the reliability of these robots. Despite recent improvements, the opportunity for further innovation of such systems remains significant. Currently, many autonomous robots rely on electric wires installed underground to delimit the boundaries of the lawn. Such a configuration is simple, but more effective autonomous solutions are available. This thesis focuses on the analysis and related implementation of both localisation and mapping features for autonomous lawn mowers. Heterogeneous sensors and their different configurations are investigated and an Adaptive Extended Kalman Filter is proposed to fuse their measurements. This technique improves the pose estimation of the autonomous lawn mower, which is then exploited by the mapping module. Based on Bayesian’s inference, the mapping module updates the knowledge of the map based on direct interactions with the environment. The final results highlight the importance of precise localisation as the bottleneck for the development of new features. The improved pose estimation enables the employment of a virtual boundary, but it is not accurate enough to precisely map the presence of objects in the environment. Advanced features which could be developed from the proposed configuration are related to deterministic coverage algorithms and the interaction with lawn objects. / Autonoma gräsklippare har varit tillgängliga för konsumenter i mer än 20 år. Under denna period har framsteg inom beräkningar av inbyggda enheter och sensorprestanda lett till förbättringar av tillförlitligheten hos dessa robotar. Trots de senaste förbättringarna är möjligheten till innovation av sådana system fortfarande betydande. Autonoma robotar har fortfarande begränsade funktioner. De förlitar sig på elektriska ledningar installerade under jord för att avgränsa gräsmattans gränser, som de reagerar på utan resonemang. En sådan konfiguration anses nu vara föråldrad och mer effektiva autonoma lösningar finns tillgängliga. Den här avhandlingen fokuserar på att använda för närvarande tillgängliga tekniker för att designa de kärnmoduler som behövs för att förbättra kapaciteten hos dessa system. Analysen och relaterad implementering av både lokaliserings och kartläggningsfunktioner för autonoma gräsklippare presenteras. Heterogena sensorer och deras olika konfigurationer undersöks och ett Adaptive Extended Kalman Filter föreslås för att smälta samman deras mätningar. Denna teknik förbättrar poseuppskattningen av den autonoma gräsklipparen, som sedan utnyttjas av kartläggningsmodulen. Det valda tillvägagångssättet för den senare, baserat på Bayesians slutledning, lyckas uppdatera kunskapen om kartan baserat på direkta interaktioner med omgivningen. De slutliga resultaten belyser vikten av exakt lokalisering som den verkliga flaskhalsen för utvecklingen av nya funktioner. Den förbättrade positionsuppskattningen gör det möjligt att definiera en virtuell gräns. Definitionen inte tillräckligt korrekt för att korrekt kartlägga förekomsten av objekt i miljön Exempel på avancerade funktioner från den föreslagna konfigurationen är implementeringen av deterministiska täckningsalgoritmer och interaktionen med gräsmattaobjekt. / I tosaerba autonomi sono disponibili per i consumatori da oltre 20 anni. Durante questo periodo, i progressi nei calcoli dei dispositivi integrati e nelle prestazioni dei sensori hanno portato a miglioramenti nell’affidabilità di questi robot. Nonostante i recenti miglioramenti, l’opportunità di innovazione di tali sistemi rimane significativa. I robot autonomi hanno ancora funzionalità limitate. Si affidano a fili elettrici installati sottoterra per delimitare i confini del prato, a cui reagiscono senza ragionamento. Tale configurazione è ormai considerata obsoleta e sono disponibili soluzioni autonome più efficaci. Questa tesi si concentra sull’utilizzo delle tecniche attualmente disponibili per progettare i moduli principali necessari per far avanzare le capacità di questi sistemi. Vengono presentate l’analisi e la relativa implementazione delle funzionalità di localizzazione e mappatura per i tosaerba autonomi. Vengono studiati sensori eterogenei e le loro diverse configurazioni e viene proposto un filtro di Kalman adattivo esteso per fondere le loro misurazioni. Questa tecnica migliora la stima della posa del rasaerba autonomo, che viene poi sfruttata dal modulo di mappatura. L’approccio scelto per quest’ultimo, basato sull’inferenza bayesiana, riesce ad aggiornare la conoscenza della mappa basata su interazioni dirette con l’ambiente. I risultati finali evidenziano l’importanza di una localizzazione precisa come vero collo di bottiglia per lo sviluppo di nuove funzionalità. La stima della posa migliorata consente la definizione di un confine virtuale. La definizione non è sufficientemente precisa per mappare correttamente la presenza di oggetti nell’ambiente Esempi di funzionalità avanzate a partire dalla configurazione proposta sono l’implementazione di algoritmi di copertura deterministici e l’interazione con gli oggetti del prato.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-307622
Date January 2021
CreatorsBoffo, Marco
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:874

Page generated in 0.0022 seconds