Return to search

Exploration de la plasticité neuronale et gliale dans le système à mélanocortine à l'échelle des repas dans un modèle murin. / Exploration of neuronal and glial plasticity in the melanocortin system at the meal in a mouse model.

En 2015, la revue Nature a publié la plus grande étude d’association pangénomique à ce jour reliant des variants génétiques à l’indice de masse corporelle. Cette étude a mis en avant le rôle du système nerveux central dans la vulnérabilité à l’obésité, et soutient un concept original selon lequel la plasticité cérébrale jouerait un rôle important dans le contrôle de la balance énergétique. Ainsi, des capacités de plasticité cérébrale réduites pourraient favoriser des comportements alimentaires inadaptés, ce qui augmenterait le risque de prise de poids sous pression calorique. Les neurones anorexigènes POMC et les neurones orexigènes AgRP qui composent le système à mélanocortine et qui contrôlent la balance énergétique, conservent effectivement des propriétés de plasticité synaptique dans le cerveau adulte. Celles-ci se manifestent en réponse à des fluctuations hormonales intenses, induites par des manipulations génétiques, chirurgicales ou nutritionnelles drastiques. Cependant le rôle physiologique de cette plasticité synaptique au sein du système à mélanocortine n’a pas encore été démontré. Nos résultats montrent que des phénomènes de plasticité cérébrale sont récapitulés à l’échelle des repas chez la souris, en fonction de l’état prandial, en réponse à des changements métaboliques et hormonaux modérés. En effet, une exposition à 1h de régime standard augmente l’activité électrique des neurones POMC, ce qui est corrélé à une rétractation de la couverture astrocytaire autour des somas POMC, sans changement de configuration synaptique par rapport à l’état préprandial. A l’opposé, une exposition à 1h de régime riche en lipides ne modifie pas l’activité électrique des neurones POMC et n’entraine pas de rétractation de la couverture astrocytaire. De plus, par blocage pharmacologique de l’hyperglycémie post-prandiale, nous avons montré que le glucose était nécessaire pour initier la rétractation gliale post-prandiale. Enfin, par une approche pharmacogénétique, nous avons montré que l’inactivation des astrocytes modifie le comportement alimentaire et diminue la couverture astrocytaire autour des neurones POMC. Ces résultats suggèrent que l’astrocyte jouerait un rôle inhibiteur sur l’activité électrique des neurones POMC et que la rétractation astrocytaire post-prandiale, autour des somas POMC lèverait l’inhibition des neurones POMC et favoriserait la sensation de satiété. Ce mode de régulation ne serait pas déclenché lors d’un repas riche en graisses, ce qui expliquerait le faible pouvoir satiétogène de ce type de repas. / In 2015, Nature published the largest pangenomic association study to date linking genetic variants to body mass index. This study highlighted the role of the central nervous system in vulnerability to obesity and supports an original concept that cerebral plasticity plays an important role in the control of energy balance. Thus, reduced cerebral plasticity capacities could lead to inadequate dietary behaviors, which would increase the risk of weight gain under caloric pressure. The anorectic neurons POMC and the orexigenic neurons AgRP of the melanocortin system, which control the energy balance, actually show synaptic plasticity properties in the adult brain. These phenomena are shown in response to intense hormonal fluctuations induced by drastic genetic, surgical or nutritional manipulations. However, the physiological role of this synaptic plasticity within the melanocortin system has not been demonstrated yet. This study shows that cerebral plasticity phenomena are recapitulated at the meal scale in mice, depending on the prandial state, in response to moderate metabolic and hormonal changes. Indeed, 1 h standard diet exposure increases the electrical activity of the POMC neurons, which is correlated with a retraction of the astrocytic coverage around the POMC somas, with no change in synaptic configuration compared to the preprandial state. In contrast, 1 hour of high fat diet exposure does not modify the electrical activity of the POMC neurons and does not involve retraction of the astrocytic coverage. In addition, by pharmacological blockade of postprandial hyperglycemia, we showed that glucose is required for postprandial glial retraction. Finally, by a pharmacogenetic approach, we have shown that the inactivation of astrocytes modifies the feeding behavior and decreases the astrocytic coverage around the POMC neurons. These results suggest i)that astrocytes would play an inhibitory role on the electrical activity of POMC neurons ii) and that the post-prandial astrocytic retraction around POMC somas might remove inhibition of POMC neurons and might promote the sensation of satiety. This mode of regulation would not be activated during a high-fat meal, which would explain the low satietogenic properties of this type of meal.

Identiferoai:union.ndltd.org:theses.fr/2017UBFCK037
Date12 December 2017
CreatorsNuzzaci, Danaé
ContributorsBourgogne Franche-Comté, Benani, Alexandre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds