1 |
Effects on domestication and feeding on the avian melanocortin systemJonsson, Malin January 2016 (has links)
Domestication in chickens has made feed-restriction a necessity if broiler breeder hens should reach sexual maturity and be fertile. This is claimed to cause chronic hunger. To measure hunger the gene expression of the appetite regulators agouti-related peptide (AgRP), pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and adenosine monophosphate-activated protein kinase (AMPK) of the melanocortin system was quantified with qPCR. This was done in feed-restricted Red Junglefowl and compared with the gene expression of two strains of feed-restricted broilers, Ross 308 and Rowan Ranger, to detect possible effects on domestication on appetite regulation. POMC-expression was upregulated 2-fold in the feed-restricted Red Junglefowl. POMC-expression was downregulated by half in the feed-restricted Ross 308. AgRP/NPY-expression was upregulated 4-fold in feed-restricted Rowan Rangers. A comparison between the control groups (ad libitum fed) of the breeds showed that the NPY-expression was lower in Ross 308 and Rowan Ranger compared with the ancestor. Results show no difference in body weight of ad libitum fed and feed-restricted Red Junglefowl. Conclusions were that the feed-restricted Red Junglefowl was not properly restricted in food supply since no difference in body weight between the treatment groups was detected. The upregulation of POMC in the feed-restricted Red Junglefowl could be stress-linked influenced by the feeding type (scattering of food in litter). No conclusions of the impact of domestication on chicken’s appetite could be drawn. Domestication has probably had its impact by altering other signaling pathways of the melanocortin system than in the arcuate nucleus.
|
2 |
Hormonal Responses that Regulate the Metabolic Benefits of Exercise: The Contribution of the Melanocortin System and the Fibroblast Growth Factor 21 (FGF21) Signaling PathwayLoyd, Christine M. January 2014 (has links)
No description available.
|
3 |
Exploration de la plasticité neuronale et gliale dans le système à mélanocortine à l'échelle des repas dans un modèle murin. / Exploration of neuronal and glial plasticity in the melanocortin system at the meal in a mouse model.Nuzzaci, Danaé 12 December 2017 (has links)
En 2015, la revue Nature a publié la plus grande étude d’association pangénomique à ce jour reliant des variants génétiques à l’indice de masse corporelle. Cette étude a mis en avant le rôle du système nerveux central dans la vulnérabilité à l’obésité, et soutient un concept original selon lequel la plasticité cérébrale jouerait un rôle important dans le contrôle de la balance énergétique. Ainsi, des capacités de plasticité cérébrale réduites pourraient favoriser des comportements alimentaires inadaptés, ce qui augmenterait le risque de prise de poids sous pression calorique. Les neurones anorexigènes POMC et les neurones orexigènes AgRP qui composent le système à mélanocortine et qui contrôlent la balance énergétique, conservent effectivement des propriétés de plasticité synaptique dans le cerveau adulte. Celles-ci se manifestent en réponse à des fluctuations hormonales intenses, induites par des manipulations génétiques, chirurgicales ou nutritionnelles drastiques. Cependant le rôle physiologique de cette plasticité synaptique au sein du système à mélanocortine n’a pas encore été démontré. Nos résultats montrent que des phénomènes de plasticité cérébrale sont récapitulés à l’échelle des repas chez la souris, en fonction de l’état prandial, en réponse à des changements métaboliques et hormonaux modérés. En effet, une exposition à 1h de régime standard augmente l’activité électrique des neurones POMC, ce qui est corrélé à une rétractation de la couverture astrocytaire autour des somas POMC, sans changement de configuration synaptique par rapport à l’état préprandial. A l’opposé, une exposition à 1h de régime riche en lipides ne modifie pas l’activité électrique des neurones POMC et n’entraine pas de rétractation de la couverture astrocytaire. De plus, par blocage pharmacologique de l’hyperglycémie post-prandiale, nous avons montré que le glucose était nécessaire pour initier la rétractation gliale post-prandiale. Enfin, par une approche pharmacogénétique, nous avons montré que l’inactivation des astrocytes modifie le comportement alimentaire et diminue la couverture astrocytaire autour des neurones POMC. Ces résultats suggèrent que l’astrocyte jouerait un rôle inhibiteur sur l’activité électrique des neurones POMC et que la rétractation astrocytaire post-prandiale, autour des somas POMC lèverait l’inhibition des neurones POMC et favoriserait la sensation de satiété. Ce mode de régulation ne serait pas déclenché lors d’un repas riche en graisses, ce qui expliquerait le faible pouvoir satiétogène de ce type de repas. / In 2015, Nature published the largest pangenomic association study to date linking genetic variants to body mass index. This study highlighted the role of the central nervous system in vulnerability to obesity and supports an original concept that cerebral plasticity plays an important role in the control of energy balance. Thus, reduced cerebral plasticity capacities could lead to inadequate dietary behaviors, which would increase the risk of weight gain under caloric pressure. The anorectic neurons POMC and the orexigenic neurons AgRP of the melanocortin system, which control the energy balance, actually show synaptic plasticity properties in the adult brain. These phenomena are shown in response to intense hormonal fluctuations induced by drastic genetic, surgical or nutritional manipulations. However, the physiological role of this synaptic plasticity within the melanocortin system has not been demonstrated yet. This study shows that cerebral plasticity phenomena are recapitulated at the meal scale in mice, depending on the prandial state, in response to moderate metabolic and hormonal changes. Indeed, 1 h standard diet exposure increases the electrical activity of the POMC neurons, which is correlated with a retraction of the astrocytic coverage around the POMC somas, with no change in synaptic configuration compared to the preprandial state. In contrast, 1 hour of high fat diet exposure does not modify the electrical activity of the POMC neurons and does not involve retraction of the astrocytic coverage. In addition, by pharmacological blockade of postprandial hyperglycemia, we showed that glucose is required for postprandial glial retraction. Finally, by a pharmacogenetic approach, we have shown that the inactivation of astrocytes modifies the feeding behavior and decreases the astrocytic coverage around the POMC neurons. These results suggest i)that astrocytes would play an inhibitory role on the electrical activity of POMC neurons ii) and that the post-prandial astrocytic retraction around POMC somas might remove inhibition of POMC neurons and might promote the sensation of satiety. This mode of regulation would not be activated during a high-fat meal, which would explain the low satietogenic properties of this type of meal.
|
4 |
Altérations hypothalamiques dans la sclérose latérale amyotrophique / Hypothalamic alterations in amyotrophic lateral sclerosisVercruysse, Pauline 28 September 2016 (has links)
La Sclérose Latérale Amyotrophique (SLA) est une maladie neurodégénérative due à la dégénérescence des motoneurones supérieurs et inférieurs. La perte des neurones moteurs entraine une atrophie puis une paralysie progressive des muscles. En plus de la perte musculaire, une perte de poids est importante chez les patients SLA. Ce symptôme apparaît avant les premiers symptômes moteurs et est corrélé avec la survie. Ce défaut du métabolisme énergétique est en partie dû à un hypermétabolisme associé à des problèmes de prise alimentaire. L’hypothalamus est la partie du cerveau contrôlant l’ensemble du métabolisme énergétique. L’objectif de ma thèse a été de caractériser les altérations hypothalamiques dans la SLA. Nous avons tout d’abord mis en évidence une anomalie du système mélanocortine de l’hypothalamus, et montré que cette anomalie était associée à des modifications du comportement alimentaire. Ensuite, nos travaux ont mis en évidence une atrophie de la partie postérieure de l’hypothalamus, comprenant l’aire hypothalamique latérale (LHA), des patients SLA, corrélée à la perte de poids. Finalement, nous démontré que les neurones produisant le MCH, situés dans le LHA, sont atteints dans la SLA et qu’une complémentation en MCH empêche la perte de poids dans un modèle animal de SLA. / Amyotrophic Lateral Sclerosis (ALS) is a major neurodegenerative disease characterised by a loss of upper and lower motor neurons. The loss of motor neurons leads to muscle atrophy and paralysis. Besides motor loss, weight loss is important in ALS patients. This symptom appears before first muscular symptoms and is correlated with survival. This defect of energetic metabolism is partially due to hypermetabolism associated with food intake problems. Hypothalamus is the part of brain controlling the energetic metabolism. The aim of my Ph.D. was to characterise hypothalamic alterations in ALS. First, we have shown a default in the melanocortin system of hypothalamus, and shown that this melanocortin defect correlates with alterations in food intake behaviour. Second, we demonstrated the existence of hypothalamic atrophy in ALS patients in the posterior part of the hypothalamus, including the lateral hypothalamic area (LHA). This atrophy was correlated with weight loss. Finally, we observed that hypothalamic MCH neurons, located in the LHA, are affected in ALS, and that MCH complementation rescues weight loss in a mouse model of ALS.
|
5 |
Gene Expression in the Brains of Two Lines of Chicken Divergently Selected for High and Low Body WeightKa, Sojeong January 2009 (has links)
Artificial divergent selection of chickens for high and low body weight at 8 weeks of age has produced two lines: the high (HWS) and low (LWS) body weight chicken lines. In addition to the difference in body weight, the lines show extreme differences in feeding behaviour and body composition. The aim of this study was to uncover the genetic and molecular factors that contribute to and determine these differences, especially regarding body energy regulation and appetite. In papers I and II, genome-wide gene expression in a brain sample containing hypothalamus and in dissected hypothalamus was analysed using DNA microarray and qRT-PCR. We found that levels of differential expression were generally moderate, which was consistent with the idea that polygenic factors were involved in the establishment of the chicken lines. Genes associated with neural plasticity, lipid metabolism and body energy regulation were differentially expressed. This result indicated that the neural systems regulating feeding behaviour and body weight were altered in the chicken lines. However, genes that were involved in the central melanocortin system were not systematically differentially expressed. Interestingly, the biggest differences in expression between the lines found in endogenous retrovirus sequences of the ALV subgroup E. Thus, in paper III, we characterized the number of integrations, the expression of ALVE retroviral elements and their effects on body weight. A significant correlation between low body weight and high ALVE expression was observed in female F9 birds from an HWS x LWS advanced intercross line. This implied that ev-loci contributing to increased ALVE expression levels were genetically linked to loci influencing the low body weight of the pullets. In paper IV, the carnitine palmitoyltransferase-1b gene (CPT1B), which was highly differentially expressed in the hypothalami, was investigated. We mapped chicken CPT1B to the distal tip of chromosome 1p. The levels of CPT1B mRNA in the HWS line were higher in the hypothalamus and lower in muscle than in the LWS line. This pattern of differential expression indicates that this gene could contribute to the remarkable phenotypic differences between HWS and LWS chickens. However, comparison with quantitative trait loci data showed that the expression of CPT1B is a trans effect, rather than a direct causative locus. In conclusion, the data suggested that the long-term selection for body weight resulted in differential gene expression in the brains of the selected chicken lines. These results may have relevance for the poultry industry and will also contribute to increasing knowledge about human diseases such as obesity and anorexia.
|
6 |
Potential Mechanisms Underlying Adaptive Thermogenesis in Lean and Obesity-Prone RatsMukherjee, Sromona 21 April 2016 (has links)
No description available.
|
Page generated in 0.0642 seconds