Dans les plasmas de tokamak peuvent se développer des instabilités MHD (Magneto-Hydro-Dynamiques) se manifestant sous la forme d’îlots magnétiques qui réduisent le confinement. Ces îlots peuvent être contrôlés par la génération localisée de courant dans le plasma. Dans cette thèse, nous nous intéressons à la modélisation des îlots magnétiques et de leur contrôle en utilisant une description fluide (MHD) du plasma, à l’aide du code XTOR. Nous détaillons l'inclusion d'une source de courant au sein du modèle MHD, ce qui nécessite l'ajout d'une équation supplémentaire pour modéliser la propagation de la densité de courant le long des lignes de champ magnétique. Cette implémentation est ensuite vérifiée sur la base de modèles analytiques, nous permettant de retrouver l'influence de paramètres tels que la largeur du dépôt ou son désalignement. Nous avons mis en évidence des effets non-décrits par les modèles asymptotiques, liés à la nature de la localisation spatiale de la source de courant. Nous nous sommes ensuite intéressés aux stratégies de contrôle envisageable pour la suppression des îlots. Nous avons ajouté au sein du code XTOR un système de contrôle qui ajuste le dépôt de courant selon les stratégies choisies. Des simulations MHD non-linéaires des différents schémas de contrôle ont été effectuées, et les différentes stratégies comparées, permettant de préciser pour chacune une gamme d’intérêt. / Magneto-Hydro-Dynamic (MHD) instabilities are susceptible to develop within a tokamak plasma. These instabilities manifest themselves as magnetic islands which reduce the plasma confinement. The islands can however be controlled by driving current inside them. In this thesis, we consider the modeling of the magnetic islands and their control using first principle approaches, which rely on a global MHD description of the plasma. We have detailed the inclusion a RF-driven current like source term in an MHD code, which requires special care to be given to the modeling of the current density evolution. The implementation has been benchmarked against the asymptotic models, allowing us to retrieve the influence of parameters such as deposition width or misalignment with respect to the island width and position. Beyond these aspects, we have evidenced new effects, linked to the 3D nature of the current deposition. We have observed a flip instability in which an island, reduced by the ECCD, brutally inverse its phase so that its X-Point faces the current deposition, allowing the mode the grow further. We then moved on to the topic of the best suitable control strategies for the control of the island. We have implemented in XTOR a control system that mimics the experimental ones and adapt the current deposition in function of a preset strategy. Nonlinear MHD simulations have been carried out using different control schemes, allowing us to quantify the gain to expect from each of these methods depending on the characteristics of the current deposition.
Identifer | oai:union.ndltd.org:theses.fr/2016AIXM4070 |
Date | 17 November 2016 |
Creators | Février, Olivier |
Contributors | Aix-Marseille, Beyer, Peter |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds