The development of molecular tools for detection and typing of unicellular intestinal parasites has revealed genetic diversities in species that were previously considered as distinct entities. Of great importance is the genetic distinction found between the pathogenic Entamoeba histolytica and the non-pathogenic Entamoeba dispar, two morphologically indistinguishable species. Blastocystis sp. is a ubiquitous intestinal parasite with unsettled pathogenicity. Molecular studies of Blastocystis sp. have identified 17 genetic subtypes, named ST1-17. Genetically, these subtypes could be considered as different species, but it is largely unknown what phenotypic or pathogenic differences exist between them. This thesis explores molecular methods for detection and genetic subtyping of unicellular intestinal parasites, with special focus on Blastocystis. We found that PCR-based methods were highly sensitive for detection of unicellular intestinal parasites, but could be partially or completely inhibited by substances present in faeces. A sample transport medium containing guanidinium thiocyanate was shown to limit the occurrence of PCR inhibition. The prevalence of Blastocystis in Swedish university students was over 40%, which is markedly higher than what was previously estimated. Blastocystis ST3 and ST4 were the two most commonly found Blastocystis subtypes in Sweden, which is similar to results from other European countries. Blastocystis sp. and Giardia intestinalis were both commonly detected in Zanzibar, Tanzania, each with a prevalence exceeding 50%. Blastocystis ST1, ST2, and ST3 were common, but ST4 was absent. While G. intestinalis was most common in the ages 2-5 years, the prevalence of Blastocystis increased with increasing age, at least up to young adulthood. We found no statistical association between diarrhoea and Blastocystis sp., specific Blastocystis subtype or G. intestinalis. Metagenomic sequencing of faecal samples from Swedes revealed that Blastocystis was associated with high intestinal bacterial genus richness, possibly signifying gastrointestinal health. Blastocystis was also positively associated with the bacterial genera Sporolactobacillus and Candidatus Carsonella, and negatively associated with the genus Bacteroides. Blastocystis ST4 was shown to have limited intra-subtype genetic diversity and limited geographic spread. ST4 was also found to be the major driver behind the positive association between Blastocystis and bacterial genus richness and the negative association with Bacteroides.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-132441 |
Date | January 2017 |
Creators | Forsell, Joakim |
Publisher | Umeå universitet, Institutionen för klinisk mikrobiologi, Umeå : Umeå universitet |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 1889 |
Page generated in 0.0028 seconds