Le sujet de la thèse porte sur l'étude d'une nouvelle classe de modèles de transport quantique: les modèles fluides quantiques issus du principe de minimisation d'entropie. Ces modèles ont été dérivés dans deux articles publiés en 2003 et 2005 par Degond, Méhats et Ringhofer dans Journal of Statistical Physics en adaptant au cadre de la théorie quantique la méthode des moments développée par Levermore dans le cadre classique. Cette méthode consiste à prendre les moments de l'équation de Liouville quantique et à fermer ce système par un équilibre local (ou Maxwellienne quantique) défini comme minimiseur d'une certaine entropie quantique sous contrainte de conservation de certaines quantités physiques comme la masse, le courant, et l'énergie. Le principal intérêt des modèles quantiques ainsi obtenus provient du fait qu'étant macroscopiques, ils sont biens moins coûteux numériquement que des modèles microscopiques comme l'équation de Schrödinger ou l'équation de Wigner, et de plus, ils prennent en compte implicitement des effets de collision bien plus difficiles à modéliser à un niveau microscopique. Le but de cette thèse est donc de proposer des méthodes numériques pour implémenter ces modèles et de les tester sur des dispositifs physiques adéquats.<br />Nous avons donc commencé dans le chapitre I par proposer une discrétisation du plus simple de ces modèles qu'est le modèle de Dérive-Diffusion Quantique sur un domaine fermé. Puis nous avons décidé dans le chapitre II et III d'appliquer ce modèle au transport d'électrons dans les semiconducteurs en choisissant comme dispositif ouvert la diode à effet tunnel résonnant. Ensuite nous nous sommes intéressés au chapitre IV à l'étude et l'implémentation du modèle d'Euler Quantique Isotherme, avant de s'attaquer aux modèles non isothermes dans le chapitre V avec l'étude des modèles d'Hydrodynamique Quantique et de Transport d'Énergie Quantique. Enfin, le chapitre VI s'intéresse à un problème un petit peu différent en proposant un schéma asymptotiquement stable dans la limite semi-classique pour l'équation de Schrödinger écrite dans sa formulation fluide: le système de Madelung.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00218256 |
Date | 12 December 2007 |
Creators | Gallego, Samy |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds