Return to search

Modèles linéaires généralisés à effets aléatoires : contributions au choix de modèle et au modèle de mélange

Ce travail est consacré à l'étude des modèles linéaires généralisés à effets aléatoires (GL2M). Dans ces modèles, sous une hypothèse de distribution normale des effets aléatoires, la vraisemblance basée sur la distribution marginale du vecteur à expliquer n'est pas, en général, calculable de façon formelle. Dans la première partie de notre travail, nous revisitons différentes méthodes d'estimation non exactes par le biais d'approximations réalisées à différents niveaux selon les raisonnements. La deuxième partie est consacrée à la mise en place de critères de sélection de modèles au sein des GL2M. Nous revenons sur deux méthodes d'estimation nécessitant la construction de modèles linéarisés et nous proposons des critères basés sur la vraisemblance marginale calculée dans le modèle linéarisé obtenu à la convergence de la procédure d'estimation. La troisième et dernière partie s'inscrit dans le cadre des modèles de mélanges de GL2M. Les composants du mélange sont définis par des GL2M et traduisent différents états possibles des individus. Dans le cadre de la loi exponentielle, nous proposons une méthode d'estimation des paramètres du mélange basée sur une linéarisation spécifique à cette loi. Nous proposons ensuite une méthode plus générale puisque s'appliquant à un mélange de GL2M quelconques. Cette méthode s'appuie sur une étape de Metropolis-Hastings pour construire un algorithme de type MCEM. Les différentes méthodes développées sont testées par simulations.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00388820
Date29 September 2006
CreatorsMartinez, Marie-José
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds