• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Méthodes quasi-Monte Carlo et Monte Carlo : application aux calculs des estimateurs Lasso et Lasso bayésien / Monte Carlo and quasi-Monte Carlo methods : application to calculations the Lasso estimator and the Bayesian Lasso estimator

Ounaissi, Daoud 02 June 2016 (has links)
La thèse contient 6 chapitres. Le premier chapitre contient une introduction à la régression linéaire et aux problèmes Lasso et Lasso bayésien. Le chapitre 2 rappelle les algorithmes d’optimisation convexe et présente l’algorithme FISTA pour calculer l’estimateur Lasso. La statistique de la convergence de cet algorithme est aussi donnée dans ce chapitre en utilisant l’entropie et l’estimateur de Pitman-Yor. Le chapitre 3 est consacré à la comparaison des méthodes quasi-Monte Carlo et Monte Carlo dans les calculs numériques du Lasso bayésien. Il sort de cette comparaison que les points de Hammersely donne les meilleurs résultats. Le chapitre 4 donne une interprétation géométrique de la fonction de partition du Lasso bayésien et l’exprime en fonction de la fonction Gamma incomplète. Ceci nous a permis de donner un critère de convergence pour l’algorithme de Metropolis Hastings. Le chapitre 5 présente l’estimateur bayésien comme la loi limite d’une équation différentielle stochastique multivariée. Ceci nous a permis de calculer le Lasso bayésien en utilisant les schémas numériques semi implicite et explicite d’Euler et les méthodes de Monte Carlo, Monte Carlo à plusieurs couches (MLMC) et l’algorithme de Metropolis Hastings. La comparaison des coûts de calcul montre que le couple (schéma semi-implicite d’Euler, MLMC) gagne contre les autres couples (schéma, méthode). Finalement dans le chapitre 6 nous avons trouvé la vitesse de convergence du Lasso bayésien vers le Lasso lorsque le rapport signal/bruit est constant et le bruit tend vers 0. Ceci nous a permis de donner de nouveaux critères pour la convergence de l’algorithme de Metropolis Hastings. / The thesis contains 6 chapters. The first chapter contains an introduction to linear regression, the Lasso and the Bayesian Lasso problems. Chapter 2 recalls the convex optimization algorithms and presents the Fista algorithm for calculating the Lasso estimator. The properties of the convergence of this algorithm is also given in this chapter using the entropy estimator and Pitman-Yor estimator. Chapter 3 is devoted to comparison of Monte Carlo and quasi-Monte Carlo methods in numerical calculations of Bayesian Lasso. It comes out of this comparison that the Hammersely points give the best results. Chapter 4 gives a geometric interpretation of the partition function of the Bayesian lasso expressed as a function of the incomplete Gamma function. This allowed us to give a convergence criterion for the Metropolis Hastings algorithm. Chapter 5 presents the Bayesian estimator as the law limit a multivariate stochastic differential equation. This allowed us to calculate the Bayesian Lasso using numerical schemes semi-implicit and explicit Euler and methods of Monte Carlo, Monte Carlo multilevel (MLMC) and Metropolis Hastings algorithm. Comparing the calculation costs shows the couple (semi-implicit Euler scheme, MLMC) wins against the other couples (scheme method). Finally in chapter 6 we found the Lasso convergence rate of the Bayesian Lasso when the signal / noise ratio is constant and when the noise tends to 0. This allowed us to provide a new criteria for the convergence of the Metropolis algorithm Hastings.
2

Modèles linéaires généralisés à effets aléatoires : contributions au choix de modèle et au modèle de mélange

Martinez, Marie-José 29 September 2006 (has links) (PDF)
Ce travail est consacré à l'étude des modèles linéaires généralisés à effets aléatoires (GL2M). Dans ces modèles, sous une hypothèse de distribution normale des effets aléatoires, la vraisemblance basée sur la distribution marginale du vecteur à expliquer n'est pas, en général, calculable de façon formelle. Dans la première partie de notre travail, nous revisitons différentes méthodes d'estimation non exactes par le biais d'approximations réalisées à différents niveaux selon les raisonnements. La deuxième partie est consacrée à la mise en place de critères de sélection de modèles au sein des GL2M. Nous revenons sur deux méthodes d'estimation nécessitant la construction de modèles linéarisés et nous proposons des critères basés sur la vraisemblance marginale calculée dans le modèle linéarisé obtenu à la convergence de la procédure d'estimation. La troisième et dernière partie s'inscrit dans le cadre des modèles de mélanges de GL2M. Les composants du mélange sont définis par des GL2M et traduisent différents états possibles des individus. Dans le cadre de la loi exponentielle, nous proposons une méthode d'estimation des paramètres du mélange basée sur une linéarisation spécifique à cette loi. Nous proposons ensuite une méthode plus générale puisque s'appliquant à un mélange de GL2M quelconques. Cette méthode s'appuie sur une étape de Metropolis-Hastings pour construire un algorithme de type MCEM. Les différentes méthodes développées sont testées par simulations.
3

New simulation schemes for the Heston model

Bégin, Jean-François 06 1900 (has links)
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma. / Financial stocks are often modeled by stochastic differential equations (SDEs). These equations could describe the behavior of the underlying asset as well as some of the model's parameters. For example, the Heston (1993) model, which is a stochastic volatility model, describes the behavior of the stock and the variance of the latter. The Heston model is very interesting since it has semi-closed formulas for some derivatives, and it is quite realistic. However, many simulation schemes for this model have problems when the Feller (1951) condition is violated. In this thesis, we introduce new simulation schemes to simulate price paths using the Heston model. These new algorithms are based on Broadie and Kaya's (2006) method. In order to increase the speed of the exact scheme of Broadie and Kaya, we use, among other things, Markov chains Monte Carlo (MCMC) algorithms and some well-chosen approximations. In our first algorithm, we modify the second step of the Broadie and Kaya's method in order to get faster schemes. Instead of using the second-order Newton method coupled with the inversion approach, we use a Metropolis-Hastings algorithm. The second algorithm is a small improvement of our latter scheme. Instead of using the real integrated variance over time p.d.f., we use Smith's (2007) approximation. This helps us decrease the dimension of our problem (from three to two). Our last algorithm is not based on MCMC methods. However, we still try to speed up the second step of Broadie and Kaya. In order to achieve this, we use a moment-matched gamma random variable. According to Stewart et al. (2007), it is possible to approximate a complex gamma convolution (somewhat near the representation given by Glasserman and Kim (2008) when T-t is close to zero) by a gamma distribution.
4

Quelques contributions sur les méthodes de Monte Carlo

Atchadé, Yves F. January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
5

New simulation schemes for the Heston model

Bégin, Jean-François 06 1900 (has links)
Les titres financiers sont souvent modélisés par des équations différentielles stochastiques (ÉDS). Ces équations peuvent décrire le comportement de l'actif, et aussi parfois certains paramètres du modèle. Par exemple, le modèle de Heston (1993), qui s'inscrit dans la catégorie des modèles à volatilité stochastique, décrit le comportement de l'actif et de la variance de ce dernier. Le modèle de Heston est très intéressant puisqu'il admet des formules semi-analytiques pour certains produits dérivés, ainsi qu'un certain réalisme. Cependant, la plupart des algorithmes de simulation pour ce modèle font face à quelques problèmes lorsque la condition de Feller (1951) n'est pas respectée. Dans ce mémoire, nous introduisons trois nouveaux algorithmes de simulation pour le modèle de Heston. Ces nouveaux algorithmes visent à accélérer le célèbre algorithme de Broadie et Kaya (2006); pour ce faire, nous utiliserons, entre autres, des méthodes de Monte Carlo par chaînes de Markov (MCMC) et des approximations. Dans le premier algorithme, nous modifions la seconde étape de la méthode de Broadie et Kaya afin de l'accélérer. Alors, au lieu d'utiliser la méthode de Newton du second ordre et l'approche d'inversion, nous utilisons l'algorithme de Metropolis-Hastings (voir Hastings (1970)). Le second algorithme est une amélioration du premier. Au lieu d'utiliser la vraie densité de la variance intégrée, nous utilisons l'approximation de Smith (2007). Cette amélioration diminue la dimension de l'équation caractéristique et accélère l'algorithme. Notre dernier algorithme n'est pas basé sur une méthode MCMC. Cependant, nous essayons toujours d'accélérer la seconde étape de la méthode de Broadie et Kaya (2006). Afin de réussir ceci, nous utilisons une variable aléatoire gamma dont les moments sont appariés à la vraie variable aléatoire de la variance intégrée par rapport au temps. Selon Stewart et al. (2007), il est possible d'approximer une convolution de variables aléatoires gamma (qui ressemble beaucoup à la représentation donnée par Glasserman et Kim (2008) si le pas de temps est petit) par une simple variable aléatoire gamma. / Financial stocks are often modeled by stochastic differential equations (SDEs). These equations could describe the behavior of the underlying asset as well as some of the model's parameters. For example, the Heston (1993) model, which is a stochastic volatility model, describes the behavior of the stock and the variance of the latter. The Heston model is very interesting since it has semi-closed formulas for some derivatives, and it is quite realistic. However, many simulation schemes for this model have problems when the Feller (1951) condition is violated. In this thesis, we introduce new simulation schemes to simulate price paths using the Heston model. These new algorithms are based on Broadie and Kaya's (2006) method. In order to increase the speed of the exact scheme of Broadie and Kaya, we use, among other things, Markov chains Monte Carlo (MCMC) algorithms and some well-chosen approximations. In our first algorithm, we modify the second step of the Broadie and Kaya's method in order to get faster schemes. Instead of using the second-order Newton method coupled with the inversion approach, we use a Metropolis-Hastings algorithm. The second algorithm is a small improvement of our latter scheme. Instead of using the real integrated variance over time p.d.f., we use Smith's (2007) approximation. This helps us decrease the dimension of our problem (from three to two). Our last algorithm is not based on MCMC methods. However, we still try to speed up the second step of Broadie and Kaya. In order to achieve this, we use a moment-matched gamma random variable. According to Stewart et al. (2007), it is possible to approximate a complex gamma convolution (somewhat near the representation given by Glasserman and Kim (2008) when T-t is close to zero) by a gamma distribution.

Page generated in 0.1249 seconds