Return to search

On intrinsic uncertainties in earth system modelling

Uncertainties are pervasive in the Earth System modelling. This is not just due to a lack of knowledge about physical processes but has its seeds in intrinsic, i.e. inevitable and irreducible, uncertainties concerning the process of modelling as well. Therefore, it is indispensable to quantify uncertainty in order to determine, which are robust results under this inherent uncertainty. The central goal of this thesis is to explore how uncertainties map on the properties of interest such as phase space topology and qualitative dynamics of the system. We will address several types of uncertainty and apply methods of dynamical systems theory on a trendsetting field of climate research, i.e. the Indian monsoon.<br><br>

For the systematic analysis concerning the different facets of uncertainty, a box model of the Indian monsoon is investigated, which shows a saddle node bifurcation against those parameters that influence the heat budget of the system and that goes along with a regime shift from a wet to a dry summer monsoon. As some of these parameters are crucially influenced by anthropogenic perturbations, the question is whether the occurrence of this bifurcation is robust against uncertainties in parameters and in the number of considered processes and secondly, whether the bifurcation can be reached under climate change. Results indicate, for example, the robustness of the bifurcation point against all considered parameter uncertainties. The possibility of reaching the critical point under climate change seems rather improbable. <br><br>
A novel method is applied for the analysis of the occurrence and the position of the bifurcation point in the monsoon model against parameter uncertainties. This method combines two standard approaches: a bifurcation analysis with multi-parameter ensemble simulations. As a model-independent and therefore universal procedure, this method allows investigating the uncertainty referring to a bifurcation in a high dimensional parameter space in many other models.
<br><br>
With the monsoon model the uncertainty about the external influence of El Niño / Southern Oscillation (ENSO) is determined. There is evidence that ENSO influences the variability of the Indian monsoon, but the underlying physical mechanism is discussed controversially. As a contribution to the debate three different hypotheses are tested of how ENSO and the Indian summer monsoon are linked. In this thesis the coupling through the trade winds is identified as key in linking these two key climate constituents. On the basis of this physical mechanism the observed monsoon rainfall data can be reproduced to a great extent. Moreover, this mechanism can be identified in two general circulation models (GCMs) for the present day situation and for future projections under climate change.
<br><br>
Furthermore, uncertainties in the process of coupling models are investigated, where the focus is on a comparison of forced dynamics as opposed to fully coupled dynamics. The former describes a particular type of coupling, where the dynamics from one sub-module is substituted by data. Intrinsic uncertainties and constraints are identified that prevent the consistency of a forced model with its fully coupled counterpart. Qualitative discrepancies between the two modelling approaches are highlighted, which lead to an overestimation of predictability and produce artificial predictability in the forced system.
The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted.
<br><br>
All in this, this thesis contributes to the fundamental issue of dealing with uncertainties the climate modelling community is confronted with. Although some uncertainties allow for including them in the interpretation of the model results, intrinsic uncertainties could be identified, which are inevitable within a certain modelling paradigm and are provoked by the specific modelling approach. / Die vorliegende Arbeit untersucht, auf welche Weise Unsicherheiten, wie sie in der integrierten Klima(folgen)forschung allgegenwärtig sind, die Stabilität und die Struktur dynamischer Systeme beeinflussen. <br>
Im Rahmen der Erdsystemmodellierung wird der Unsicherheitsanalyse zunehmend eine zentrale Bedeutung beigemessen. Einerseits können mit ihrer Hilfe disziplinäre Qualitäts-standards verbessert werden, andererseits ergibt sich die Chance, im Zuge von "Integrated Assessment" robuste entscheidungsrelevante Aussagen abzuleiten.
<br><br>
Zur systematischen Untersuchung verschiedener Arten von Unsicherheit wird ein konzeptionelles Modell des Indischen Monsuns eingesetzt, das einen übergang von einem feuchten in ein trockenes Regime aufgrund einer Sattel-Knoten-Bifurkation in Abhängigkeit derjenigen Parameter zeigt, die die Wärmebilanz des Systems beeinflussen. Da einige dieser Parameter anthropogenen Einflüssen und Veränderungen unterworfen sind, werden zwei zentrale Punkte untersucht: zum einen, ob der Bifurkationspunkt robust gegenüber Unsicherheiten in Parametern und in Bezug auf die Anzahl und die Art der im Modell implementierten Prozesse ist und zum anderen, ob durch anthropogenen Einfluss der Bifurkationspunkt erreicht werden kann. Es zeigt sich unter anderem, dass das Auftreten der Bifurkation überaus robust, die Lage des Bifurkationspunktes im Phasenraum ist hingegen sehr sensitiv gegenüber Parameterunsicherheiten ist.
<br><br>
Für diese Untersuchung wird eine neuartige Methode zur Untersuchung des Auftretens und der Lage einer Bifurkation gegenüber Unsicherheiten im hochdimensionalen Parameterraum entwickelt, die auf der Kombination einer Bifurkationsanalyse mit einer multi parametrischen Ensemble Simulation basiert.
<br><br>
Mit dem Monsunmodell wird des weiteren die Unsicherheit bezüglich des externen Einflusses von El Niño / Southern Oscillation (ENSO) untersucht. Es ist bekannt, dass durch ENSO die Variabilität des Indischen Monsun beeinflußt wird, wohingegen der zu Grunde liegende Mechanismus kontrovers diskutiert wird. In dieser Arbeit werden drei verschiedene Hypothesen zur Kopplung zwischen diesen beiden Phänomenen untersucht. Es kann gezeigt werden, dass die Passat Winde einen Schlüsselmechanismus für den Einfluß von ENSO auf den Indischen Monsun darstellen.<br>
Mit Hilfe dieses Mechanismus können die beobachteten Niederschlagsdaten des Monsuns zu einem großen Anteil reproduziert werden. Zudem kann dieser Mechanismus kann auch in zwei globalen Zirkulationsmodellen (GCMs) für den heutigen Zustand und für ein Emissionsszenario unter Klimawandel identifiziert werden.
<br><br>
Im weiteren Teil der Arbeit werden intrinsische Unsicherheiten identifiziert, die den Unterschied zwischen der Kopplung von Teilmodulen und dem Vorschreiben von einzelnen dieser Module durch Daten betreffen. Untersucht werden dazu ein getriebenes GCM-Ensemble und ein konzeptionelles Ozean-Atmosphären-Modell, das eine strukturierte Analyse anhand von Methoden der Theorie dynamischer Systeme ermöglicht.<br>
In den meisten Fällen kann die getriebene Version, in der ein Teil der Dynamik als externer Antrieb vorschrieben wird, das voll gekoppelte Pendant nachbilden. Es wird gezeigt, dass es jedoch auch Regionen im Phasen- und Parameterraum gibt, in dem sich die zwei Modellierungsansätze signifikant unterscheiden und unter anderem zu einer überschätzung der Vorhersagbarkeit und zu künstlichen Zuständen im getriebenen System führen. Die Ergebnisse legen den Schluss nahe, dass immer auch alternative Kopplungsmechanismen getestet werden müssen bevor das getriebene System als adäquate Beschreibung des gekoppelten Gesamtsystems betrachtet werden kann.
<br><br>
Anhand der verschiedenen Anwendungen der Unsicherheitsanalyse macht die Arbeit deutlich, dass zum einen Unsicherheiten intrinsisch durch bestimmte Arten der Modellierung entstehen und somit unvermeidbar innerhalb eines Modellierungsansatzes sind, dass es zum anderen aber auch geeignete Methoden gibt, Unsicherheiten in die Modellierung und in die Bewertung von Modellergebnissen einzubeziehen.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:1094
Date January 2006
CreatorsKnopf, Brigitte
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.002 seconds