1 |
Modeling a gravity current in a shallow fluid systemKulis, Paula Sharon 25 January 2012 (has links)
Corpus Christi Bay in Texas is a wind driven system, and under most conditions winds over the bay mix the water column vertically. However, seasonal, episodic, bottom-water hypoxia has been observed in the bay in conjunction with vertical salinity stratification. This stratification may be caused by dense gravity currents entering the bay.
Understanding and modeling the mechanisms that result in stratification in Corpus Christi Bay may help predict hypoxia, and for this reason that is the focus of this dissertation. An evaluation of existing gravity current modeling techniques shows that most currently available models are designed to capture either phenomena local to a gravity current, such as gravity current entrainment and spreading, or larger scale phenomena such as wind mixing and large-scale circulation, but not both.
Because gravity current mixing in Corpus Christi Bay is enhanced by wind-induced turbulence, both local gravity current physics and wind mixing effects are critical elements governing gravity current propagation in Corpus Christi Bay. As existing models do not represent gravity current entrainment and wind mixing together, this dissertation develops a coupled model system that accounts explicitly for turbulent wind mixing of a bottom-boundary layer, in addition to representing other local features of dense gravity current propagation such as entrainment and spreading. The coupled model system consists of a 2D depth-averaged hydrodynamic model that calculates gravity current mixing and spreading, coupled with a 3D hydrodynamic model whose domain includes a lighter ambient fluid surrounding the gravity current. The coupled models have flexible boundary conditions that allow fluid exchange to represent mixing from both gravity current entrainment and wind mixing.
The coupled model system’s development, verification and application in Corpus Christi Bay advances understanding of gravity current mechanisms, and contributes to our scientific understanding of hypoxia in Corpus Christi Bay. This modeling technique has the flexibility to be applied to other density-stratified systems that are shallow and potentially wind-driven, such as shallow desalination brine disposal sites. / text
|
2 |
Modélisation locale diphasique eau-vapeur des écoulements dans les générateurs de vapeur / Local two-phase modeling of the water-steam flows occurring in steam generatorsDenèfle, Romain 14 November 2013 (has links)
Cette travail de thèse est lié au besoin de modélisation des écoulements diphasiques en générateurs de vapeur (entrée liquide et sortie vapeur). La démarche proposée consiste à faire le choix d'une modélisation hybride de l'écoulement, en scindant la phase gaz en deux champs, modélisés de manières différentes. Ainsi, les petites bulles sphériques sont modélisées avec une approche dispersée classique avec le modèle eulérien à deux fluides, et les bulles déformées sont simulées à l'aide d'une méthode de localisation d'interface.Le travail effectué porte sur la mise en place, la vérification et la validation du modèle dédié aux larges bulles déformées, ainsi que le couplage entre les deux approches pour le gaz gaz, permettant des premiers calculs de démonstration utilisant l'approche hybride complète. / The present study is related to the need of modeling the two-phase flows occuring in a steam generator (liquid at inlet and vapour at outlet). The choice is made to investigate a hybrid modeling of the flow, considering the gas phase as two separated fields, each one being modeled with different closure laws. In so doing, the small and spherical bubbles are modeled through a dispersed approach within the two-fluid model, and the distorted bubbles are simulated with an interface locating method.The main outcome is about the implementation, the verification and the validation of the model dedicated to the large and distorted bubbles, as well as the coupling of the two approaches for the gas, allowing the presentation of demonstration calculations using the so-called hybrid approach.
|
3 |
Coupling Heat Transfer and Fluid Flow Solvers for Multi-Disciplinary SimulationsLiu, Qingyun 13 December 2003 (has links)
The purpose of this study is to build, test, validate, and implement two heat transfer models, and couple them to an existing fluid flow solver, which can then be used for simulating multi-disciplinary problems. The first model is for heat conduction computations, the other one is a quasi-one-dimensional cooling channel model for water-cooled jacket structural analysis. The first model employs the integral, conservative form of the thermal energy equation, which is discretized by means of a finite-volume numerical scheme. A special algorithm is developed at the interface between the solid and fluid regions, in order to keep the heat flux consistent. The properties of the solid region materials can be temperature dependent, and different materials can be used in different parts of the domains, thanks to a multi-block gridding strategy. The cooling channel flow model is developed by using uasi-one-dimensional conservation laws of mass, momentum, and energy, taking into account the effects of heat transfer and friction. It is possible to have phase changes in the channel, and a mixture model is applied, which allows two phases to be present, as long as they move at the same bulk velocity and vapor quality does not exceed relatively small values. The coupling process of both models (with the fluid solver and with each other) is handled within the Loci system, and is detailed in this study. A hot-air nozzle wall problem is simulated, and the computed results are validated with available experimental data. Finally, a more complex case involving the water-cooled nozzle of a Rocket Based Combined Cycle(RBCC) gaseous oxygen/gaseous hydrogen thruster is simulated, which involves all three models, fully coupled. The calculated temperatures in the nozzle wall and at the cooling channel outlet compare favorably with experimental data.
|
4 |
A Machine Learning Model Predicting Errors in Simplified Continental Ice Sheet SimulationsHeumann, Joakim January 2024 (has links)
Continental ice sheet simulations are commonly based on either the Full Stokes (FS) model, or its simplification, the Shallow Ice Approximation (SIA) model. This thesis examines a machine learning error estimation approach for assessing the accuracy of the solutions to the SIA model, where the reference (exact) solution is that of the Stokes model. We use Gaussian Process (GP) regression through existing GP libraries in Python to model and train a machine learning model. For computational efficiency reasons we use Variational Nearest Neighbor Gaussian Processes (VNNGP), where the input data are the SIA solution and the ice sheet geometry characteristics. The output data is the error between the SIA solution and the FS solution. We find that these models trained on various ice sheet geometries are able to make rough predictions for other simple geometries not trained for; however we observe a poor fit for the much more complex Greenland geometry, which suggests further work to be done, utilizing more diverse geometries for training.
|
5 |
Couplage de modèles population et individu-centrés pour la simulation parallélisée des systèmes biologiques : application à la coagulation du sang / Population and individual-based model coupling for the parallel simulation of biological systems : application to blood coagulationCrépin, Laurent 28 October 2013 (has links)
Plusieurs types d’expérimentation existent pour étudier et comprendre les systèmes biologiques. Dans ces travaux, nous nous intéressons à la simulation in silico, c’est-à-dire à la simulation numérique de modèles sur un ordinateur. Les systèmes biologiques sont composés d’entités, à la fois nombreuses et variées, en interaction les unes avec les autres. Ainsi, ils peuvent être modélisés par l’intermédiaire de deux approches complémentaires : l’approche population-centrée et l’approche individu-centrée. Face à la multitude et à la variété des phénomènes composant les systèmes biologiques, il nous semble pertinent de coupler ces deux approches pour obtenir une modélisation mixte. En outre, en raison de la quantité conséquente d’informations que représente l’ensemble des entités et des interactions à modéliser, la simulation numérique des systèmes biologiques est particulièrement coûteuse en temps de calcul informatique. Ainsi, dans ce mémoire, nous proposons des solutions techniques de parallélisation permettant d’exploiter au mieux les performances offertes par les architectures multicoeur et multiprocesseur et les architectures graphiques pour la simulation de systèmes biologiques à base de modélisations mixtes. Nous appliquons nos travaux au domaine de la coagulation du sang et plus particulièrement à l’étude de la cinétique biochimique à l’échelle microscopique ainsi qu’à la simulation d’un vaisseau sanguin virtuel. Ces deux applications nous permettent d’évaluer les performances offertes par les solutions techniques de parallélisation que nous proposons, ainsi que leur pertinence dans le cadre de la simulation des systèmes biologiques. / Several types of experimentation exist to study and understand biological systems. Inthis document, we take an interest in in silico simulation, i.e. numerical simulation ofmodels on a computer. Biological systems are made of many various entities, interactingwith each other. Therefore, they can be modeled by two complementary approaches: thepopulation-based approach and the individual-based one. Because of the multitude anddiversity of the phenomena constituting biological systems, we find the coupling of thesetwo approaches relevant to provide a hybrid modelisation. Moreover, because of the hugequantity of data that the entities and interactions represent, numerical simulation of biologicalsystems is especially computationaly intensive. This is why, in this document, we proposeparallel computing methods to take advantage of the performances offered by multicore andmultiprocessor architectures and by graphical ones for the simulation of biological systemsusing hybrid modelisations. We apply our work to blood coagulation and especially to thestudy of biochemical kinetics at the microscopic scale and the simulation of a virtual bloodvessel. These two applications enable us to assess both the performances obtained by theparallel computing methods we proposed and their relevance for biological systems simulation.
|
6 |
Estimation de la biomasse fourragère des prairies : apports du couplage entre modèles dynamiques de croissance et imagerie satellitaire : exemple de La Réunion et du Kalahari / Estimation of forage biomass in grasslands : contributions of the coupling between dynamic growth models and satellite imagery : example of Reunion Island and KalahariAlexandre, Cyprien 11 December 2017 (has links)
Cette étude a eu pour but d'étudier la possibilité de couplage de modèles dynamiques de croissance de l'herbe avec des données de télédétection, et ce pour deux terrains contrastés : La Réunion et le Kalahari (Afrique du Sud). Deux phases se sont succédé. Une première phase exploratoire, basée sur des images SPOT5 et SPOT5take5 (satellites désorbités en cours d'étude) a permis de tirer plusieurs enseignements. A La Réunion l'ajustement d’un modèle empirique entre indices de végétation et biomasse engendre trop d'erreur. Il est en revanche possible d'estimer le Leaf Area Index (LAI) grâce au NDVI (Normalized Difference Vegetation Index). Les parcours du Kalahari, plus complexes, avec différentes strates de végétation (graminées, arbustes, arbres) n'ont pas permis d'estimer l'état du couvert de graminées. Cette phase a ouvert la voie au travail effectué sur un capteur plus pérenne dans le temps, Sentinel-2. Les données Sentinel-2 ont permis d'estimer le LAI des prairies réunionnaises avec une RMSE (Root Mean Square Error) de 0,63 (r²=0,82). Le LAI ainsi estimé a été utilisé dans le couplage du modèle dynamique permettant une baisse générale de la RMSE de l'ordre de 40% par rapport au modèle sans couplage. Ces résultats ont été obtenus durant l'hiver austral, la saison sèche. Durant la période d'été austral les pluies plus abondantes accélèrent la croissance des plantes et les cycles de pousse se raccourcissent. Les images satellites sans couvert nuageux se font plus rares. La prise en compte de cette combinaison de facteurs pouvant impacter les prédictions de biomasse fourragère fera partie des principale perspectives de ce travail. / The purpose of this study was to explore the possibility of coupling dynamic models of grass growth with remote sensing data for two contrasting countries: Reunion Island and Kalahari (South Africa). Two phases followed one another. A first exploratory phase, based on SPOT5 and SPOT5take5 images (desorbed satellites under study) allowed us to learn from this experience. In Reunion the adjustment of an empirical model between vegetation indices and biomass generates too much error. However it is possible to estimate the Leaf Area Index (LAI) thanks to the NDVI (Normalized Difference Vegetation Index). More complex Kalahari rangelands with different vegetation strata (grasses, shrubs, trees) failed to estimate grass cover conditions. This phase set the stage to work on a more durable sensor over time, Sentinel-2. Sentinel-2 data made it possible to estimate the LAI of Reunion Island grasslands with a RMSE (Root Mean Square Error) of 0.63 (r² = 0.82). The LAI thus estimated was used in the coupling of the dynamic model, allowing a general decrease of the RMSE of the order of 40% compared to the model without coupling. These results were obtained during the austral winter, the dry season. During the austral summer, the more abundant rains speed up the growth of the plants and the growth cycles become shorter. Satellite images without cloud cover are becoming scarce. Taking into account this combination of factors that may impact predictions of forage biomass will be one of the main perspectives of this work.
|
7 |
Couplage de modèles, algorithmes multi-échelles et calcul hybride / Model coupling and hybrid computing for multi-scale CFDEtancelin, Jean-Matthieu 04 December 2014 (has links)
Dans cette thèse nous explorons les possibilités offertes par l'implémentation de méthodes hybrides sur des machines de calcul hétérogènes dans le but de réaliser des simulations numériques de problèmes multiéchelles. La méthode hybride consiste à coupler des méthodes de diverses natures pour résoudre les différents aspects physiques et numériques des problèmes considérés. Elle repose sur une méthode particulaire avec remaillage qui combine les avantages des méthodes Lagrangiennes et Eulériennes. Les particules sont déplacées selon le champ de vitesse puis remaillées à chaque itération sur une grille en utilisant des formules de remaillage d'ordre élevés. Cette méthode semi-Lagrangienne bénéficie des avantages du maillage régulier mais n'est pas contrainte par une condition de CFL.Nous construisons une classe de méthodes d'ordre élevé pour lesquelles les preuves de convergence sont obtenues sous la seule contrainte de stabilité telle que les trajectoires des particules ne se croisent pas.Dans un contexte de calcul à haute performances, le développement du code de calcul a été axé sur la portabilité afin de supporter l'évolution rapide des architectures et leur nature hétérogène. Une étude des performances numériques de l'implémentation GPU de la méthode pour la résolution d'équations de transport est réalisée puis étendue au cas multi-GPU. La méthode hybride est appliquée à la simulation du transport d'un scalaire passif dans un écoulement turbulent 3D. Les deux sous-problèmes que sont l'écoulement turbulent et le transport du scalaire sont résolus simultanément sur des architectures multi-CPU et multi-GPU. / In this work, we investigate the implementation of hybrid methods on heterogeneous computers in order to achieve numerical simulations of multi-scale problems. The hybrid numerical method consists of coupling methods of different natures to solve the physical and numerical characteristics of the problem. It is based on a remeshed particle method that combines the advantages of Lagrangian and Eulerian methods. Particles are pushed by local velocities and remeshed at every time-step on a grid using high order interpolation formulas. This forward semi-lagrangian method takes advantage of the regular mesh on which particles are reinitialized but is not limited by CFL conditions.We derive a class of high order methods for which we are able to prove convergence results under the sole stability constraint that particle trajectories do not intersect.In the context of high performance computing, a strong portability constraint is applied to the code development in order to handle the rapid evolution of architectures and their heterogeneous nature. An analysis of the numerical efficiency of the GPU implementation of the method is performed and extended to multi-GPU platforms. The hybrid method is applied to the simulation of the transport of a passive scalar in a 3D turbulent flow. The two sub-problems of the flow and the scalar calculations are solved simultaneously on multi-CPU and multi-GPU architectures.
|
8 |
Modélisation des écoulements eau-vapeur « tous régimes d’écoulements » par une approche multi-champ / Multifield approach and interface locating method for two-phase flows in nuclear power plantFleau, Solène 21 June 2017 (has links)
La compréhension des écoulements à bulles dans les centrales nucléaires demeure encore un élément limitant dans l’analyse des opérations et de la sûreté des installations. Pour ne citer qu’un exemple, l’amélioration de la durée de vie etde la performance des générateurs de vapeur nécessite d’appréhender les régimes d’écoulement au sein des tubes qui sont responsables de leur vibration. Cependant, pour simuler avec précision ces écoulements, les codes de simulation numérique doivent relever de nombreux défis parmi lesquels la capacité à simuler des inclusions ayant des tailles très variées. Dans cette thèse, une nouvelle approche, appelée approche multi-champ, est implémentée dans le code NEPTUNE_CFD, basé sur un modèle bi-fluide. Cette approche inclut une méthode de suivi d’interface pour les grandes structures déformables et prend en compte les effets liés à la turbulence et aux changements de phase.Pour simuler de tels écoulements complexes en limitant le coût CPU, l’approche multi-champ considère séparément les petites inclusions sphériques des grandes inclusions déformables. Ainsi, les petites structures sphériques sont définies via un champ eulérien dispersé évoluant au sein d’un champ continu porteur, comme c’est habituellement le cas avec le modèle bi-fluide. Les grosses bulles déformables sont considérées comme des interfaces entre deux champs continus, un champ liquide et un champ gaz. Si on prend l’exemple d’un écoulement diphasique avec de l’eau et des bulles d’air de différentes tailles, trois champs sont alors définis pour cet écoulement: un champ continu liquide, un champ continu gaz et un champ dispersé gaz contenant les petites bulles sphériques. Cependant, simuler avec précision des interfaces entre deux champscontinus avec le modèle bi-fluide nécessite le développement de traitements spécifiques afin de coupler les deux champs à l’interface et de limiter la diffusion de cette interface.Après avoir amélioré la simulation des interfaces dans des écoulements laminaires, les effets liés à la turbulence sont étudiés. Une étude a priori de simulations aux grandes échelles est proposée pour identifier les termes sous-mailles et comparer différents modèles de turbulence disponibles dans la littérature. L’implémentation et la validation du modèle de turbulence retenu suite à l’étude sont détaillées. Les changements de phase sont ensuite explorés via le développement d’un modèle spécifique pour le terme de transfert de masse. Pour finir, des simulations trois champs sont présentées. De nouveauxcritères sont définis pour modéliser la fragmentation des grandes inclusions déformables en petites bulles sphériques ainsi que la coalescence de ces dernières pour former de grandes bulles déformables.A chaque étape de l’implémentation des différents modèles évoqués, des validations basées sur des données analytiques et issues d’expériences sont présentées afin de s’assurer que les phénomènes physiques sont bien prédits. Des cas tests dans des configurations industrielles sont également détaillés pour montrer la capacité de l’approche développée à simuler des écoulements complexes / Bubbly flows occurring in nuclear power plants remain a major limiting phenomenon for the analysis of operation and safety. As an example, the improvement of steam generator lifetime and performance relies on the comprehension of flow regimes inside the tubes responsible for tube vibrations. However, to ensure an accurate simulation of these flows, theComputational Multi-Fluid Dynamics (CMFD) codes have to take up many challenges, among others the ability of dealing with a variety of inclusion sizes. The classical two-fluid model allows simulating small spherical inclusions but is not able to compute large deformable inclusions. Thus, in this thesis, a new approach, called the multifield approach, is implementedin the CMFD code NEPTUNE_CFD, based on a two-fluid model. This approach includes an interface tracking method for large and deformable structures and takes into account turbulence and phase change effects.To simulate such complex flows with reasonable computational costs, the multifield approach considers separately the small spherical inclusions and the large deformable ones. Thus, the small spherical structures are defined as a dispersed field evolving in a continuous carrier field, as usually done in the two-fluid model. The large deformable bubbles are considered as interfaces between two continuous phases treated as two different fields in the two-fluid model. In the example of a two-phase flow with water and air bubbles of different sizes, three fields are defined: a continuous liquid field, a continuous gas field and a dispersed gas field containing the small spherical bubbles. However, the accurate simulation of interfaces between the two continuous fields within the two-fluid model requires specific treatments to couple the two fields at the interface and to limit the interface smearing.After improving the interface simulation in laminar flows, turbulence effects are investigated. An a priori Large Eddy Simulation (LES) study is performed to identify the predominant subgrid terms and to compare different availableturbulence models. The implementation and validation of the most suitable model is proposed. Phase change interfaces are then explored with the development of a specific model for the mass transfer term. Finally, three fields simulations are performed. New criteria are defined for the breakup of the large deformable inclusions into small spherical bubbles and for the coalescence of the latter forming large deformable bubbles.Validation at each step of the models implementations are presented using analytical and experimental data to ensure that the physical phenomena are well predicted. Test cases in industrial configurations are finally performed to show the ability of the developed approach to deal with complex flows
|
9 |
Assimilation de données ensembliste et couplage de modèles hydrauliques 1D-2D pour la prévision des crues en temps réel. Application au réseau hydraulique "Adour maritime / Ensemblist data assimilation and 1D-2D hydraulic model coupling for real-time flood forecasting. Application to the "Adour maritime" hydraulic networkBarthélémy, Sébastien 12 May 2015 (has links)
Les inondations sont un risque naturel majeur pour les biens et les personnes. Prévoir celles-ci, informer le grand public et les autorités sont de la responsabilité des services de prévision des crues. Pour ce faire ils disposent d'observations in situ et de modèles numériques. Néanmoins les modèles numériques sont une représentation simplifiée et donc entachée d'erreur de la réalité. Les observations quant à elle fournissent une information localisée et peuvent être également entachées d'erreur. Les méthodes d'assimilation de données consistent à combiner ces deux sources d'information et sont utilisées pour réduire l'incertitude sur la description de l'état hydraulique des cours d'eau et améliorer les prévisisons. Ces dernières décennies l'assimilation de données a été appliquée avec succès à l'hydraulique fluviale pour l'amélioration des modèles et pour la prévision des crues. Cependant le développement de méthodes d'assimilation pour la prévision en temps réel est contraint par le temps de calcul disponible et par la conception de la chaîne opérationnelle. Les méthodes en question doivent donc être performantes, simples à implémenter et peu coûteuses. Un autre défi réside dans la combinaison des modèles hydrauliques de dimensions différentes développés pour décrire les réseaux hydrauliques. Un modèle 1D est peu coûteux mais ne permet pas de décrire des écoulement complexes, contrairement à un modèle 2D. Le simple chainage des modèles 1D et 2D avec échange des conditions aux limites n'assure pas la continuité de l'état hydraulique. Il convient alors de coupler les modèles, tout en limitant le coût de calcul. Cette thèse a été financée par la région Midi-Pyrénées et le SCHAPI (Service Central d'Hydrométéorolgie et d'Appui à la Prévisions des Inondations) et a pour objectif d'étudier l'apport de l'assimilation de données et du couplage de modèles pour la prévision des crues. Elle se décompose en deux axes : Un axe sur l'assimilation de données. On s'intéresse à l'émulation du filtre de Kalman d'Ensemble (EnKF) sur le modèle d'onde de crue. On montre, sous certaines hypothèses, qu'on peut émuler l'EnKF avec un filtre de Kalman invariant pour un coût de calcul réduit. Dans un second temps nous nous intéressons à l'application de l'EnKF sur l'Adour maritime avec un modèle Saint-Venant. Nous en montrons les limitations dans sa version classique et montrons les avantages apportés par des méthodes complémentaires d'inflation et d'estimation des covariances d'erreur d'observation. L'apport de l'assimilation des données in situ de hauteurs d'eau sur des cas synthétiques et sur des crues réelles a été démontré et permet une correction spatialisée des hauteurs d'eau et des débits. En conséquence, on constate que les prévisions à court terme sont améliorées. Nous montrons enfin qu'un système de prévisions probabilistes sur l'Adour dépend de la connaissance que l'on a des forçages amonts ; un axe sur le couplage de modèles hydrauliques. Sur l'Adour 2 modèles co-existent : un modèle 1D et un modèle 2D au niveau de Bayonne. Deux méthodes de couplage ont été implémentées. Une première méthode, dite de "couplage à interfaces", combine le 1D décomposé en sous-modèles couplés au 2D au niveau frontières liquides de ce dernier. Une deuxième méthode superpose le 1D avec le 2D sur la zone de recouvrement ; le 1D force le 2D qui, quand il est en crue, calcule les termes d'apports latéraux pour le 1D, modélisant les échanges entre lit mineur et lit majeur. Le coût de calcul de la méthode par interfaces est significativement plus élevé que celui associé à la méthode de couplage par superposition, mais assure une meilleure continuité des variables. En revanche, la méthode de superposition est immédiatement compatible avec l'approche d'assimilation de données sur la zone 1D. / Floods represent a major threat for people and society. Flood forecasting agencies are in charge of floods forecasting, risk assessment and alert to governmental authorities and population. To do so, flood forecasting agencies rely on observations and numerical models. However numerical models and observations provide an incomplete and inexact description of reality as they suffer from various sources of uncertianties. Data assimilation methods consists in optimally combining observations with models in order to reduce both uncertainties in the models and in the observations, thus improving simulation and forecast. Over the last decades, the merits of data assimilation has been greatly demonstrated in the field of hydraulics and hydrology, partly in the context of model calibration or flood forecasting. Yet, the implementation of such methods for real application, under computational cost constraints as well as technical constraints remains a challenge. An other challenge arises when the combining multidimensional models developed over partial domains of catchment. For instance, 1D models describe the mono-dimensional flow in a river while 2D model locally describe more complex flows. Simply chaining 1D and 2D with boundary conditions exchange does not suffice to guarantee the coherence and the continuity of both water level and discharge variables between 1D and 2D domains. The solution lies in dynamical coupling of 1D and 2D models, yet an other challenge when computational cost must be limited. This PhD thesis was funded by Midi-Pyrénées region and the french national agency for flood forecasting SCHAPI. It aims at demonstrating the merits of data assimilation and coupling methods for floof forecasting in the framework of operational application. This thesis is composed of two parts : A first part dealing with data assimilation. It was shown that, under some simplifying assumptions, the Ensemble Kalman filter algorithm (EnKF) can be emulated with a cheaper algorithm : the invariant Kalman filter. The EnKF was then implemented ovr the "Adour maritime" hydraulic network on top of the MASCARET model describing the shallow water equations. It was found that a variance inflation algorithm can further improve data assimlation results with the EnKF. It was shown on synthetical and real cases experiments that data assimilation provides an hydraulic state that is in great agreement with water level observations. As a consequence of the sequential correction of the hydraulic state over time, the forecasts were also greatly improved by data assimilation over the entire hydraulic network for both assimilated and nonassimilated variables, especially for short term forecasts. It was also shown that a probabilistic prediction system relies on the knowledge on the upstream forcings ; A second part focusses on hydraulic models coupling. While the 1D model has a great spatial extension and describes the mono-dimensional flow, the 2D model gives a focus on the Adour-Nive confluence in the Bayonne area. Two coupling methods have been implemented in this study : a first one based on the exchange of the state variables at the liquid boundaries of the models and a second one where the models are superposed. While simple 1D or chained 1D-2D solutions provide an incomplete or discontinuous description of the hydraulic state, both coupling methods provide a full and dynamically coherent description of water level and discharge over the entire 1D-2D domain. On the one hand, the interface coupling method presents a much higher computational cost than the superposition methods but the continuity is better preserved. On the other hand, the superposition methods allows to combine data assimilation of the 1D model and 1D-2D coupling. The positive impact of water level in-situ observations in the 1D domain was illustrated over the 2D domain for a flood event in 2014.
|
10 |
Hydrological and water quality assessment of forested coastal watershedsBhattarai, Shreeya 12 May 2023 (has links) (PDF)
Coastal regions are at risk of environmental threats. Flooding in coastal rivers is the result of intense precipitation which is triggered by climate change. Coastal watersheds are prone to losing significant amounts of sediment and nutrients because of the shorter transport pathway that drains directly into the coastal water. In this study, the hydrology, flood frequency, and water quality assessment of two coastal watersheds, Wolf River watershed (WRW) and Jourdan River watershed (JRW), were conducted using the Soil and Water Assessment Tool (SWAT). Since WRW and JRW are the main tributaries to fetch freshwater to Saint Louis Bay (SLB) of Western Mississippi Sound, an integrated approach to assess the influence of freshwater influx into the coastal water is also performed by coupling SWAT with hydrodynamic visual Environment Fluid Dynamics Code (v-EFDC). An auto-calibration tool, SWAT Calibration and Uncertainty Programs (SWAT-CUP) was used to calibrate and validate the flow, total suspended solids and mineral phosphorous for obtaining satisfactory statistical results. While comparing the flood frequency of historical, baseline and projected scenario in both watersheds, the results illustrated that using annual maximum series, 1% exceedance probability was the highest for WRW baseline scenario, whereas for JRW, 1% exceedance probability was the highest for projected scenario. The water quality assessment study of WRW and JRW suggested that ponds and wetlands were more effective in reducing TSS and riparian buffers were more effective in reducing MinP at the outlet of both the watersheds. The integrated approach of coupling SWAT-vEFDC model result indicated that major impact on water quality was observed at the location where the freshwater inflow into the SLB, and the impact was diminished while moving further along the Western Mississippi Sound. Overall, this study gives an insight for integrated coastal watershed management which includes prediction of future flood frequency, the application of best management practices for reducing sediment and nutrient load, and estimation of upstream watershed pollutant load draining along with runoff including its effect on the coastal water quality.
|
Page generated in 0.136 seconds